Chapter 3

ELEMENTS OF GROUP 3

George Davidson

3.1 BOE	RON	120
3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.1.8 3.1.9 3.1.10	Boranes Borane Anions and Metallo-derivatives Carba- and other Non-metal heteroboranes Metallo-heteroboranes Compounds containing B-C Bonds Compounds containing B-N, B-P or B-As Bonds Compounds containing B-O, B-S or B-Se Bonds Boron Halides Boron-containing Heterocycles Boron Carbide and Metal Borides	120 121 127 128 132 134 138 142 144 153
3.2 ALU	MINIUM	153
3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6	Aluminium Hydrides	153 154 156 159 164 167
3.3 GAI	LIUM	167
3.3.1 3.3.2 3.3.3 3.3.4 3.3.5	Compounds containing Ga-C Bonds	167 168 168 170 170
3.4 IND	DIUM	171
3.4.1 3.4.2 3.4.3	Compounds containing In-N, In-P or In-Sb Bonds Compounds containing In-O, In-S or In-Te Bonds Indium Halides	171 172 173
3.5 THA	ALLIUM	173
3.5.1 3.5.2	Thallium(I) Compounds	173 176
DEFECTION COS		170

3.1 BORON

3.1.1 Boranes

A fully numerical Hartree-Fock approach has been developed for diatomic molecules, leading to an improved Hartree-Fock limit for BH. A set of full CI calculations has been reported for BH, using a double-zeta plus polarisation basis. 99% of the correlation energy is obtained by using SDTQ-CI calculations at the geometries examined.²

Preliminary ab initio calculations of the potential surface of ${\rm BH_2}^+$ suggest that bent (${\rm C_{2v}}$ or near ${\rm C_{2v}}$) geometries are the most

$$B^{+}(^{1}S) + H_{2} \rightarrow BH^{+}(B^{2}\Sigma^{+}) + H$$
 ...(1)

$$B^{+}(^{1}S) + H_{2} \rightarrow BH^{+}(A^{2}\pi) + H$$
 ...(2)

favoured for the intermediates in reactions (1) and (2). 3

A new method has been proposed for the canonical numbering, stereochemical descriptors and unique linear notations for polyhedral clusters. Examples were given of the application of this to boranes, borane anions, metal carbaborane complexes etc.

A systematic structural nomenclature described for polyboron hydrides and similar systems has now been extended to include capped polyhedral systems, 5 non-closed structures, their hetero-(including metallo-) analogues and derivatives. 6

Ab initio calculations (using a 3-21G basis set) on the course of reaction of ethylene with ${\rm H_3B.OH_2}$ (a model for hydroboration in ether solvents) show that the mechanism is essentially an ${\rm S_N^2}$ displacement of the solvent by the olefin. ${\rm H_2O}$ plays no major role in transition state, but BH, never becomes wholly free. 7

A method for determining B_2H_6 in organic solvents has been devised from a study of the coulometric titration of B_2H_6 -ether and B_2H_6 -DMF complexes.⁸

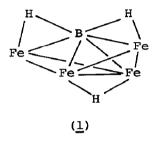
The reactions of B_2H_6 with aromatic heterocycles, containing one or more six-membered rings with only one nitrogen per ring, have been studied. Hydroboration frequently occurs, <u>via</u> intermediate borane adduct formation.

Calculations on a series of boranes, from B_2H_6 up to $B_2O^H_{16}$, suggest that in their crystals the potential energy barriers for large amplitude molecular reorientations are of the same order of magnitude as the lattice energies. 10

 $^{11}{\rm B}$ n.m.r. data on quadrupolar relaxation in ${\rm B_3H_7X}$ show that the relaxation times fall in the sequence X = NMe₃ < NMe₂H < NMeH₂ < NH₃ < CH₃CN, and X = Cl < NCS - < BH₃CN - < CN - . 11

Protonation of boranes and carbaboranes, B_4H_{10} , B_nH_{n+4} (n = 2,5 or 6), $C_2B_nH_{n+2}$ (n = 3,4,5 or 10), CB_5H_9 , B_nH_n (n = 4,6 or 7), has been studied by MNDO calculations. The calculated proton affinities, and protonated structures, were reported. The calculations predict B-B edge protonation for B_6H_{10} and $1.6-C_2B_4H_6$; B-B-B face protonation for B_6H_6 , B_7H_7 , $2.4-C_2B_5H_7$ and $1.12-C_2B_{10}H_{12}$; proton attack yielding a three-centre B-H₂ bond for B_2H_6 , B_4H_{10} and B_5H_9 ; carbon protonation for $1.5-C_2B_3H_5$ and $2-CB_5H_9$; and formation of a two-centre B-H bond for B_4H_4 . The sites of protonation correlate with the electronic structures of the substrates. Some 3-21G ab initio calculations were also performed. 12

Pentaborane(9), in the presence of catalytic amounts of PdBr₂, reacts with various alkenes (e.g. ethylene, propylene, 1-butene) to give excellent yields of 1- and 2-substituted alkenylpentaboranes. These are the first such reactions in which Pd(II) acts as a catalyst in the absence of an additional oxidising agent. 13


Rearrangements of various deuterium-labelled derivatives of B₅H₈ in Et₂O were studied by ¹¹B and ²H n.m.r. Two pathways for intramolecular exchange were identified at temperatures below 65°C. One allows for movement from bridging to basal terminal positions, while the second (of higher energy) allows migration from basal terminal positions to the apex of the molecule. Exchange involving the apex of pentaborane appears only to occur when a substituent is one of the migrating groups. ¹⁴

A one-step synthesis has been reported for 1,2'- $[B_5H_8]_2$, a PtBr₂-catalysed dehydrodimerisation of B_5H_9 in essentially quantitative yield. Only one of three possible isomers was produced, suggesting that both electrophilic attack and oxidative addition of pentaborane(9) at the metal are important. ¹⁵

3.1.2 Borane Anions and their Metallo-derivatives

Nb₂Cl₁₀ and NbCl₄ react with hydridotris- and hydridobis(1-pyrazolyl)borate salts to produce several Nb(V) and Nb(IV) (1-pyrazolyl)borates, e.g. $K\{NbCl_5[HB(pz)_3]\}$, $Nb_2Cl_6[H_2B(pz)_2]_2$ etc. vBH modes were assigned from i.r. spectra, and structures were suggested, based on 1H n.m.r. 16

 ${\rm B_2H_6Fe_2\,(CO)_6}$ reacts with excess ${\rm Fe_2\,(CO)_9}$ in pentane at $25^{\circ}{\rm C}$ to form a new ferraborane, ${\rm HFe_4\,(CO)_{12}BH_2}$. This was characterised by single crystal X-ray crystallography. This contains an ${\rm HFe_4\,(CO)_{12}}$ "butterfly" fragment with ${\rm BH_2}$ bridging the "wing-tips", $(\underline{1})$. The structure is closely similar to the isoelectronic ${\rm HFe_4\,(CO)_{12}CH}$. The compound can be described as an arachno-, four-atom cluster with an interstitial boron atom, or as a saturated, 62-electron complex with a ${\rm BH_2}$ ligand contributing five electrons. The orientation of the ${\rm BH_2}$ with respect to the iron "butterfly" is explicable in terms of the special properties of the frontier orbitals of the ${\rm Fe_4}$ fragment. 17

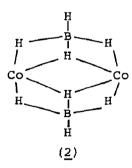
The compounds $M(BH_3Me)_4$, where M = Zr, Th, U or Np, have been synthesised, using reaction (3). The molecular structures were

$$MCl_4 + 4LiBH_3Me \xrightarrow{C_6H_5Cl} M(BH_3Me)_4 + 4LiCl ...(3)$$

determined by X-ray diffraction. All are monomeric, with tetrahedral coordination by four BH $_3$ Me groups, via tridentate hydrogen bridges. The M-B distances are: Zr, 2.335 \pm 0.003Å; Th, 2.56 \pm 0.05Å; U, 2.49 \pm 0.02Å; Np, 2.487 \pm 0.006Å.

The possibility of a general synthesis of lithium organotrihydroborates, Lirbh₃, was investigated by reactions of organolithium compounds with BH₃.THF, BH₃.SMe₂ or BH₃.NMe₃. RLi with BH₃.THF give all possible Lir_{4-n}BH_n, except that n = 0 is not found for bulky R. With BH₃.SMe₂, RLi forms higher proportions of Lirbh₃, especially at low temperatures, e.g. Lime₂CHBH₃ and Lime₃CBH₃ in good yield, although some LiBH₄ is always present. BH₃.NMe₃ only reacts with RLi above 80°C, but LiPhBH₃.TMEDA and LiPhCH₂BH₃.TMEDA could be formed. 19

U.v. photolysis of solutions containing BH_4^- , BH_3^- CN or $(Bu^{t}O)_3BH^-$ in liquid NH_3 leads to electron detachment from the anions, and proton loss, producing borane radical anions e.g.


·BH₃-.20

 $\underline{\rm Ab}$ initio calculations on LiBH $_4$ and NaBH $_4$ are consistent with a non-rigid model for these molecules. 21

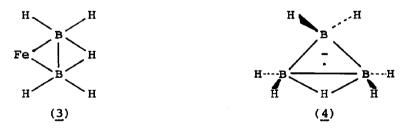
Exposure of Na⁺BH₄ or Na⁺BD₄ to 6O Co γ -rays at 77K produces a species with large proton hyperfine coupling to two equivalent protons (or deuterons) and a small coupling to two other protons (deuterons), together with a strongly anisotropic coupling to 11 B. These are consistent with the formation of a $^{\circ}$ BH₄ radical of $^{\circ}$ C₂V symmetry (cf. $^{\circ}$ D_{2d} geometry for the isoelectronic $^{\circ}$ CH₄ $^{+}$). $^{\circ}$ 22

A single-crystal neutron diffraction study of $\mathrm{Hf}(\mathrm{BH}_4)_4$ shows that the molecule is monomeric, with rigorous $\mathrm{T_d}$ symmetry, and tridentate $\mathrm{BH_4}^-$ coordination. The following bond lengths were determined: $\mathrm{Hf}\text{-B}$, 2.281(8)Å; $\mathrm{Hf}\text{-H_{br}}$, 2.130(9)Å; $\mathrm{B}\text{-H_{br}}$, 1.235(10)Å; $\mathrm{B}\text{-H_{+}}$, 1.150(19)Å. ²³

 ${\rm Co_2\,(BH_4)_2}[{\rm Ph_2P\,(CH_2)_5PPh_2}]_2.0.5{\rm C_6H_6}$, one of several intermediates in reactions involving ${\rm Co^{11}}$, ${\rm NaBH_4}$ and α , ω -bis (diphenylphosphino)-alkanes, is a phosphine-bridged binuclear species in which each of the two ${\rm BH_4}$ groups also bridges the two ${\rm Co(I)}$ units by a new type of bond: M-H-BH₂-H-M. A further unusual feature of the structure is that one hydrogen atom of each of the two central ${\rm BH_2}$ groups also acts as a bridging ligand. This central unit is thus $(\underline{2}).^{24}$

 ΔG^{\dagger} for the fluxional process in [(MeO) $_3$ P] $_2$ CuBH $_4$ was estimated from data on [(MeO) $_3$ P] $_2$ CuBH $_3$ (CO $_2$ Et). The difference in ΔG^{\dagger} for the copper complex, compared to the bidentate vanadium complex is thought to be due to differences in B-H bond strengths rather than differences in geometry. ²⁵

 CO_2 and COS react with $(R_3P)_2Cu(\eta^2-BH_4)$ under very mild conditions to form $(R_3P)_2Cu(\eta^2-OXCH)$, where X=0 or $S.^{26}$

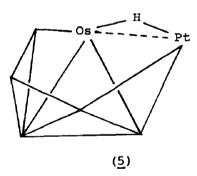

An X-ray structure determination for $Sc\{\eta-C_5H_3(SiMe_3)_2\}_2(\mu-H)_2BH_2$ confirms the bidentate bonding of BH_4 , with the Sc...B distance

2.52(3) $^{\rm A}$. The analogues with Y or Yb are also bidentate, but rapid bridging \rightleftharpoons terminal hydrogen exchange takes place. For La, Pr, Nd and Sm the BH $_4^-$ units are tridentate. 27

Lanthanum and cerium tetrahydroborates can be prepared from LaCl $_3$ or CeCl $_3$ and NaBH $_4$ in an aromatic solvent. Non-solvated M(BH $_4$) $_3$ (M = La or Ce) can be prepared from tetrahydrofuran adducts in vacuo at 100-110°C. ²⁸ Lanthanide chlorides react with NaBH $_4$ in 1,2-dimethoxyethane (DME) to form crystalline NaLn(BH $_4$) $_4$.4DME (Ln = Gd or Tb), amorphous NaLn(BH $_4$) $_4$.3DME (Ln = Dy, Ho, Er or Tm), and the ether-soluble NaLn(BH $_4$) $_4$.4DME (Ln = Yb or Lu).

A theoretical study has been made of $B_2H_7^-$: ab initio m.o. calculations at the MP2/6-31G* level confirm that a single, bent B-H-B bridge is preferred. However, other details of the experimental structure are not reproduced very well. 30

The valence-level photoelectron spectrum of Cp(OC) $_2$ Fe-B $_2$ H $_5$ has been measured in the gas-phase with HeI and NeI radiation. The assignment proposed was based on spectra of model compounds, and also m.o. calculations on the compound, compared with (OC) $_4$ Fe(C $_2$ H $_4$) and free B $_2$ H $_5$ and C $_2$ H $_4$. The B $_2$ H $_5$ ligand can be considered as a side-bound B $_2$ H $_4$ 2, as a π -ligand, with a proton in the π -lobe opposite the metal, (3). The proton has a significant effect on the bonding, as the Fe-B interaction is quite different from the Fe-C interaction in the C $_2$ H $_4$ complex. 31



Thermal transformations have been studied for the Na⁺ and NMe₄⁺ salts of B₃H₈⁻, in the range 100-280°C. Formation of lower members of the series of polyhedral ions, e.g. B₆H₆²⁻, requires higher temperatures than for higher members, e.g. B₁₂H₁₂²⁻³² Kinetics of thermal decomposition have been measured for NaB₃H₈ at 80-100°C under static isothermal conditions. The solid-phase decomposition follows a first-order law, releasing B₅H₉ and H₂, in the molar ratio 2:1. The radical anion of triborane (7), B₃H₇,

is generated by hydrogen abstraction from B_3H_8 . It was studied by e.s.r., and MNDO-UHF calculations. The structure is believed to be cyclic, of C_{2v} symmetry, with a single bridging hydrogen, (4).

Os (CO) ClH (PPh₃)₃ reacts under mild conditions with <u>arachno-B₃H₈</u> or <u>nido-B₅H₈</u> to form the first-known air-stable polyhedral osmaboranes: <u>arachno-[(HOsB₃H₈) (CO) (PPh₃)]</u> and <u>nido-[(OsB₅H₉) (CO)-(PPh₃)₂]</u> respectively. The ¹B and ¹H n.m.r. properties of these are very similar to those of the iridium analogues, <u>arachno-[(H2IrB₃H₈) (PPh₃)₂]</u> and <u>nido-[(IrB₅H₈) (CO) (PPh₃)₂]</u>. Mild thermolysis of the OsB₅H₉ compound produces <u>nido-[OsB₄H₈] (CO)-(PPh₃)₂.</u>

The first X-ray diffraction characterisation of a polyhedral metallaborane osmium compound has also been reported, for (Ph₃P)₂(CO) os (PhMe₂P) ClHPtB₅H₇. This has a seven-vertex nido-osmaplatinaborane cluster, based on a dodecahedron, with one 5-connected vertex missing, and the metal atoms at adjacent (2,7) positions in the five-membered open face, linked by Os-H-Pt bridging, (5). 36

Bonding in the closo-boron hydride anions, $B_n H_n^{2-}$, where n=5 to 12, can be considered in terms of the sum of all possible, n(n-1)/2, boron-boron interactions. The bonding energy, u, between each pair of boron atoms was only taken to depend on the internuclear distance, d, by the relationship:

$$u = \frac{1}{d^2} - \frac{1}{d} .$$

The scheme can rationalise the details of molecular geometry and can give an assessment of the relative importance of possible

intramolecular rearrangement pathways. 37 MNDO calculations were also carried out on $B_nH_n^{2-}$ (for n=6 to 12) to assess the accuracy of a recent theory of their electronic structure and bonding (A.J.Stone, Mol. Phys., 41(1980)1339). The assumptions of this theory were fully supported by the results, and the theory can also be applied to <u>closo</u>-carbaborane systems. 38

 $[\mu-1,2-(\text{MeCO.O})-2-H-2,10-(\text{PPh}_3)_2-\frac{\text{closo}}{\text{closo}}-\text{ClIrB}_8\text{H}_7]$, an Ir(III) complex, has a structure containing a closo-ten-vertex cluster, following Wade's rules. This has a bicapped Archimedean square antiprismatic structure. The Ir(III) contributes three orbitals and two electrons, and occupies a 5-connected vertex. This should be compared with the unusual $\frac{\text{iso-nido}}{\text{cluster}}$ cluster structure of the previously-reported species $\{(\text{PPh}_3), (\text{Ph}_2\text{PC}_6\text{H}_4), \{\text{IrB}_8\text{H}_8, (\text{OMe})-\text{C(OH)}\}\}$.

Polyhedron edge-bonding or -antibonding characteristics of the non-degenerate tenth and eleventh molecular orbitals of D_{3h} tricapped trigonal-prismatic 9-atom homonuclear clusters were used to rationalise the edge lengths in such clusters. The skeletal bonding is strongest, and the clusters closest to spherical, for 20 skeletal bonding electrons, as in, for example, $B_0H_0^{2-}$.

The thermal decomposition of $({\rm H_3O})_2{\rm B_{10}Cl_{10}}$ has been re-examined under dynamic vacuum. The major 9-vertex products are ${\rm H_2B_9Cl_7}$, ${\rm HB_9Cl_8}$ and ${\rm B_9Cl_9}$. At ambient temperature, no differences in the $^{11}{\rm B}$ n.m.r. chemical shifts of the halogen-substituted boron atoms in ${\rm HB_9Cl_8}$ can be resolved at 29.8MHz. Some other products of decomposition include ${\rm B_{10}Cl_{10}}$, ${\rm B_{11}Cl_{11}}$ and ${\rm B_{12}Cl_{12}}$. Mass spectral data show that the species ${\rm B_nCl_n}$, where n = 13 to 20, are also present. 41

The new heterobimetallic, "B-frame", compound $\frac{\text{nido-}[(\text{Me}_3\text{P})_2\text{Pt}(\text{Ph}_3\text{P})(\text{Ph}_2\text{PC}_6\text{H}_4)\text{HIrB}_9\text{H}_{10}]}{\text{has been prepared, with an overall yield of 40%, from nido-decaborane. The structure was established by X-ray diffraction. It is the first nido-eleven-vertex cluster, with non-adjacent metal atoms to be so characterised. 42$

The crystal structure of $[{\rm Et_4N}^+][{\rm B_{11}H_{10}SMe_2}^-]$ shows that it has eleven-vertex, <u>closo</u>-geometry similar to those reported for ${\rm B_{11}H_9Se_3}^2$, ${\rm C_2Me_2B_9H_9}$ etc. (including metalla-derivatives). Hence, <u>closo</u>-, ${\rm C_{2V}}$, geometry is adopted by all those eleven-vertex polyhedral boranes, carbaboranes and metallacarbaboranes with the correct number of electrons. 43

The molecular structure of the unusual seventeen-vertex macropolyhedral trimetallaborane, (PhMe₂P)₄Pt₃B₁₄H₁₆, may be interpreted in terms of either a formal pentadecahapto-complex of a 7,7'-bis(arachno-heptaboranyl)-type ligand, coordinated n⁴, n⁵ and n⁷ to three metal centres, or a nido-type 2,7,10-trimetalla-undecaborane cluster linked to an iso-arachno-6,8-dimetallanona-borane cluster, having three adjacent PtBPt vertices in common. 44 Heating nido-B₉H₁₂ under reflux with [Os(CO)₃Cl₂]₂ in CH₂Cl₂ leads to edge fusion of two borane units to produce anti-[B₁₉H₂₁]. The osmium compound probably forms an intermediate metallaborane.

3.1.3 Carba- and other Non-metal Heteroboranes

The magnitude of the $^1J(^{11}B^1H)$ coupling constants in closo-carbaboranes can be correlated with structural characteristics such as the number of adjacent cage carbon atoms and the cage "umbrella" angle. Both of these appears to contribute significantly to changes in the observed spin-coupling constants, hence smaller "umbrella" angles give larger $^1J(^{11}B^1H)$ values. 46

Gas-phase pyrolysis of 1,5-C₂B₃H₅ in a hot/cold reactor (400°C/0°C) gave a complex mixture of products. Major ones were a boron-boron bonded dimer, 2:2'-[1,5-C₂B₃H₄] and a trimer, 2:2',3':2"-[1,5-C₂B₃H₄][1',5'-C₂B₃H₃][1",5"-C₂B₃H₄]. However, a number of previously unknown species were also identified: a B-C bonded dimer, 1:2'-[1,5-C₂B₃H₄], two B-B/B-C linked trimers 2:2',1':2"- and 2:2',3':1"-[1,5-C₂B₃H₄][1',5'-C₂B₃H₃][1",5"-C₂B₃H₄], and a new tetracarbon nido-carbaborane, C₄B₇H₁₁. Similar studies on the pyrolysis of 1,6-C₂B₄H₆ showed only polymeric products, but a mixture of 1,5-C₂B₃H₅ and 1,6-C₂B₄H₆ gave a good yield of 2:2'-[1',5'-C₂B₃H₄][1,6-C₂B₄H₅].

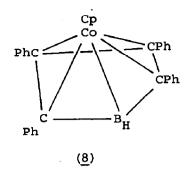
The adduct ${\rm Me_3N.5-BrC_2B_5H_6}$ undergoes quantitative halogen exchange with ${\rm CH_2Cl_2}$, forming 5-ClC₂B₅H₆.

Decaborane (14) reacts with sodium nitrite in THF to form $[9-\text{THF}-6-\text{NO}_2-\text{B}_{10}\text{H}_{12}]^{-}$. Protonation of this with concentrated H_2SO_4 or dilute HCl gave the azaboranes $6-\text{NB}_9\text{H}_{12}$ or $4-\text{NB}_8\text{H}_3$ respectively. The former yields adducts $9-\text{L}-6-\text{NB}_9\text{H}_{12}$, with L = Me_2S , MeCN or Ph_3P . Reduction, using LiAlH $_4$ in THF, of $9-\text{MeCN}-6-\text{NB}_9\text{H}_{12}$ gave the anion $6-\text{NB}_9\text{H}_{13}^{-}$. An analogous series of reactions starting from KHSO $_3$ gave $6-\text{SB}_9\text{H}_{11}$ and $4-\text{SB}_8\text{H}_{12}$, while Na_2SeO_3 formed $7,8-\text{Se}_2\text{B}_9\text{H}_9$. The structure of $4-\text{NB}_8\text{H}_{13}$ was confirmed by X-ray diffraction.

Cis-3-hexene reacts with 6-SB₉H₁₁, forming 9-C₆H₁₃-6-SB₉H₁₀. This in turn reacts with additional cis-3-hexene at higher temperatures to give multiple hydroboration in high yield. SO Alkyl isocyanides and B₉H₁₁E (where E = S or Se) react at room temperature to give initially a mixture of two isomeric B₉H₁₁E.CNR compounds. One of these reacted further to produce a good yield of the carbaborane derivative B₉H₉ECNH₂R. B₉H₁₁S reacts with NaCN, giving Na[B₉H₁₁S.CN]. Passage of the latter through an acidic ion-exchange column converted it to B₉H₉SCNH₃.

Infrared spectra were reported for solid complexes of \underline{o} - and \underline{m} -B $_{10}^{Cl}$ $_{10}^{C}$ $_{2}^{H}$ $_{2}$ with O- and N-bases. These could be related to the CH...O and CH...N hydrogen-bonding characteristics. ⁵²

Cyclic compounds containing two symmetrically-placed 1,2-dicarbacododecaboranyl or two 7,8-dicarbaundecaborate(10) fragments have been synthesised. These have -S-S- or -S-CH $_2$ -CH $_2$ -S-bridges (undegraded species) or -S-CH $_2$ -S- or -S-CH $_2$ -CH $_2$ -S- bridges (degraded species). 53



C-Lithiumcarbaboranes react with LnI_2 (where $\operatorname{Ln} = \operatorname{Sm}$, Eu or Yb) to form RLnI, where R = $(\underline{6})$. These in turn react with $\operatorname{Me}_3\operatorname{SiCl}$ to give trimethylsilylcarbaboranes and with R'CO₂H to give $(\underline{7})$. Thermolysis of $7.8-C_2B_9H_{13}$ gives a 10% yield of $\operatorname{iso-C}_4B_18H_{22}$. ^{11}B n.m.r. spectra confirmed the structure previously suggested for this, i.e. $3-(8'-\operatorname{nido}-5.6-C_2B_8H_{11})-1.2-C_2B_{10}H_{11}$.

3.1.4 Metallo-heteroboranes

The borane adduct, BH $_3$.THF, and the cobaltacycle $Cp(Ph_3P)CoC_4Ph_4$ interact to give the <u>nido-cobaltacarbaborane</u>, 3,4,5,6- Ph_4 -1,3,4,5,-6- $CpCoC_4BH$, (8), in a yield of 20%. This suggests a new general route to carbon-rich metallocarbaboranes. ⁵⁶

 $^{\rm K_2C_8H_8}$ and $^{\rm VCl}_3$ react with the <u>nido-carbaborane</u> ion $[2,3-{\rm Et_2C_2B_4H_5}]^-$ in THF at $^{\rm O}$ C to give $(\eta^8-{\rm C_8H_8})\,{\rm V}\,({\rm Et_2C_2B_4H_4})$. X-ray diffraction shows that the ${\rm C_8H_8}$ is an η^8 -planar system: it is the first example of such for a first row transition metal other

than titanium. The stability of this compound can be related to the ability of $R_2C_2B_4H_4^{\ 2}$ ligands to stabilise unusual organometallic structures and metal-hydrocarbon bonding modes. 57

Thermally-generated iron atoms react with toluene and the small carbaborane 2,3-Et $_2$ C $_2$ B $_4$ H $_6$ at low temperatures to give the (arene)-ferracarbaborane 1-(η ⁶-MeC $_6$ H $_5$)Fe-2,3-Et $_2$ C $_2$ B $_4$ H $_4$. The expected sandwich structure was confirmed by X-ray diffraction. ⁵⁸

Iron(II) chloride and ${\rm C_8H_8}^{2-}$ in THF react with ${\rm Et_2C_2B_4H_5}^{--}$ forming a 1,3,5-cyclooctatriene complex, $({\rm n^6-C_8H_{10}}){\rm Fe}({\rm Et_2C_2B_4H_4})$, and 2 minor products, $({\rm n^6-C_6H_6}){\rm Fe}({\rm Et_2C_2B_4H_4})$ and $({\rm C_{16}H_{18}}){\rm Fe}({\rm Et_2C_2B_4H_4})$. The main product was characterised by i.r., mass, ${\rm ^{11}B}$, ${\rm ^{11}H}$ and ${\rm ^{13}C}$ n.m.r. spectra, and by X-ray diffraction of the C,C'-dimethyl homologue. The metallocarbaborane fragment consists of a 7-vertex ${\rm FeC_2B_4}$ pentagonal-bipyramidal cage, as expected. ${\rm ^{59}}$

 $(\eta^6-C_8H_{1O})$ Fe (Et $_2C_2B_4H_4$) reacts in turn with benzene and other arenes in the presence of AlCl $_3$, to give the air-stable crystalline $(\eta^6-arene)$ Fe (Et $_2C_2B_4H_4$). X-ray diffraction shows that the arene ring is planar, centred over the iron atom, and parallel to the C_2B_3 ring of the carbaborane ligand. $(\eta^6-C_8H_{1O})$ Fe (Et $_2C_2B_4H_4$) reacts with N,N,N',N'-tetramethyl-1,2-diaminoethane, with loss of apical boron, and formation of $(\eta^6-C_8H_{1O})$ Fe (Et $_2C_2B_3H_5$), containing a planar carbaborane ligand.

Crystals of 3-n-cyclopentadienyl-1,2-dimethyl-1,2-dicarba-3-cobalta-closo-octaborane, 1,2-Me $_2$ -3,1,2-(n-C $_5$ H $_5$)CoC $_2$ B $_5$ H $_5$, are monoclinic, belonging to the space group P2 $_1$ /n. The cyclopenta-dienyl-substituted cobaltacarbaborane cage has closed, dodeca-hedral-type geometry, with the C and Co adjacent. This agrees with the structure proposed from spectroscopic data.

The molecular structure of 3':2-[2',4'- $C_2B_5H_6$][1,8,5,6-(η - C_5H_5)- $C_2C_2B_5H_6$] has been determined by single crystal X-ray diffraction.

This confirms the structure proposed from spectroscopic results, i.e. a two-cage complex with a 1,8,5,6-(η -C₅H₅)₂Co₂C₂B₅H₆ cobaltacarbaborane unit linked to a 2',4'-C₂B₅H₆ cage <u>via</u> a two-centre B-B single bond. The metalla-fragment is based on a tricapped trigonal prism, while the 2',4'-C₂B₅H₆ is based on a pentagonal bipyramid. ⁶²

Several products have been reported from the reaction of $IrCl(PPh_3)_3$ with the <u>arachno</u>-anion CB_8H_{13} . One of these was shown to be a novel <u>closo</u>-iridium(III) species, $l-(PPh_3)_2-2H-2,2-(PPh_3)_2-2,10-IrCB_8H_8$. Comparison with related species indicates that several pathways are possible for such cage-closure reactions, and that the presence of a varying number of cage-carbon atoms is valuable in elucidating such processes. 63

Nido-5,6-C₂B₈H₁₂ can be used to prepare the new compounds $\frac{\text{nido-9-(n-C_5H_5)-7,8,9-C_2NiB_8H_{11}; nido-9-(n-C_5H_5)-\mu_{10,11}-(Ph_3PAu)-7,8,9-C_2NiB_8H_{10}}{\text{nido-9-(n-C_5H_5)_2-1,2,3,4-CrCCrCB_8H_{10}}}.$ The structures were determined by X-ray diffraction. The last compound has a short Cr-Cr distance (2.272(2)Å) - evidence for multiple bonding between the chromium atoms in this dimetallacarbaborane. 64

Pt₂ (μ -COD) (PEt₃)₄ reacts with nido-5,6-C₂B₈H₁₂ in diethyl ether at room temperature to produce [9-H-9,9-(Et₃P)₂- μ _{10,11}-H-7,8,9-C₂PtB₈H₁₀]. This forms orthorhombic crystals, belonging to the space group P2₁2₁2₁. The cage structure is close to that of a nido-icosahedron, with a CCPtBB open face. The B-B bond is thought to be hydrogen-bridged, but the hydrogen atom was not located. Thermolysis of this compound leads to loss of H₂, and formation of [9-H-9,10-(Et₃P)₂-7,8,9-C₂PtB₈H₉]. This formally platinum(II) species shows distortion towards a closed octadecahedral structure.

Several new chromium complexes of carbaboranes have been prepared. Thus ${\rm Et_4C_4B_8H_8}^{2-}$ and ${\rm CrCl_2}$, with ${\rm Na^+C_5H_5}^-$ in cold THF form the red paramagnetic ${\rm CpCr}[{\rm Et_4C_4B_8H_8}]$, together with an unstable, purple isomer of this. Aerial oxidation of ${\rm CpCr}[{\rm Et_4C_4B_8H_8}]$ gives the yellow, unstable ${\rm CpCr}[{\rm Et_4C_4B_7H_7}]$, and a small quantity of a green isomer of this. X-ray diffraction of red ${\rm CpCr}[{\rm Et_4C_4B_8H_8}]$ and green ${\rm CpCr}[{\rm Et_4C_4B_7H_7}]$ showed that they had 13-vertex and 12-vertex nido-geometries respectively. Each formally has 2n+1 skeletal electrons, appearing to violate Wade's rules (which require 2n+4 for nido-geometry). This problem can be

overcome by assuming that the deficiency of 3-electrons is localised at the chromium atom, making it formally a 15-electron system. 66

The complexes $(PR_3)_2 \text{NiCl}_2$ react with $\underline{\text{nido}}$ -7,8-, $\underline{\text{nido}}$ -7,9- or $\underline{\text{nido}}$ -2,9-C₂B₉H₁₁ to produce the corresponding icosahedral bis(phosphine)nickelacarbaboranes in good yield. Heating $\underline{\text{closo}}$ -3,3-(triarylphosphine)₂-3,1,2-NiC₂B₉H₁₁ compounds in benzene solution at 80°C gave the corresponding $\underline{\text{closo}}$ -3,8-(triarylphosphine)₂-3-H-3,1,2-NiC₂B₉H₁₁ $\underline{\text{via}}$ interchange of phosphine and hydrido ligands. Several routes were found for the preparation of dimeric $\underline{\text{closo}}$ -{3-(μ -CO)-8-PPh₃-3,1,2-NiC₂B₉H₁₁}₂. This was characterised by single-crystal X-ray diffraction, showing that it contains a metal-metal bond (2.477(2)Å) and 2 metal-bridging carbonyl groups. 67

[(PEt₃)RhC₂B₉H₁₀]₂ can be prepared from (PEt₃)Rh(COD)C1 and Cs_2 [7-(7'-7',8'-C₂B₉H₁₁)-7,8-C₂B₉H₁₁] under reflux. The product was shown to contain two icosahedral rhodacarbaborane fragments joined symmetrically at three vertices. The Rh-Rh distance (2.725(1)Å) is in the range expected for a single bond, hence there are 4 bonds between the two icosahedra. N.m.r. parameters were reported for the compound. 68

 $[Ph_3PH]^+[\underline{closo}-3-Ph_3P-3,3-Br_2-3,1,2-RhC_2B_9H_{11}]^-$ can be prepared from BBr_3 and $\underline{closo}-3,3-(Ph_3P)_2-3-H-3,1,2-RhC_2B_9H_{11}$. It forms triclinic crystals, space group $P\overline{1}$. The rhodacarbaborane is approximately octahedral about the rhodium atom. ⁶⁹

RhCl(PPh₃)₃ and nido-B₁₀H₁₂CNH₃ in the presence of Buⁿ₄NOH give [Buⁿ₄N] [closo-2,2-(Ph₃P)₂-2-H-1-(NH₂)-2,1-RhCB₁₀H₁₀]. Heating this in methanol converts it to a new orange compound. X-ray diffraction showed this to be the Buⁿ₄N⁺ salt of an NH₂ bridged Rh-H-Rh anion dimer containing two RhCB₁₀H₁₀ units. 70

Closo-1-Me-1,2-C₂B₁₀H₁₁ reacts with two equivalents of Co(PEt₃)₄ at room temperature in toluene yielding 1-Me-4-(Et₃P)- μ_4 or 6 or 7-{Co(PEt₃)₂- μ -(H)₂}-1,2,4-C₂CoB₁₀H₁₀. The polyhedral framework is shown to be that of a distorted docosahedron, with carbon atoms in 4- and 5-, and Co(4) in a 6-connectivity vertex, adjacent to both cage carbon-atoms. The Co(PEt₃)₂ unit lies exo to the polyhedron, in a bridging position, Co(4)-B(7).

 $\underline{\text{Trans-}}[P_2^{\text{cb}}\text{MCl}_2]$, where M = Pd or Pt; $P^{\text{cb}} = \underline{\text{o-HCB}}_{10}^{\text{H}}_{10}^{\text{CCH}}_{2}^{\text{PPh}}_{2}$, readily undergo intramolecular metallation through the B-H bonds of the carbaborane cage to form exocyclic compounds with the unit

P-C-C-B-M, i.e. (9a) and (9b), where $\binom{B-}{P+} = (10)$. 72

Carbaboranyl derivatives of lanthanides have been prepared from

(RCCLi)B₁₀H₁₀ + LnCl₃.3THF \rightarrow [(R-CC-)B₁₀H₁₀]_nLnCl_{3-n}.mTHF ...(4)

lithium derivatives of carbaboranes and LnCl₃.3THF, equation (4), where Ln = La, Tm or Yb; n = 1-3; m = 1-5.

3.1.5 Compounds containing B-C Bonds

The reactivity of borane carbonyl, BH₃CO, has been compared with that of CH₃CO⁺. The products are the (carbonyl)trihydroborate anions, BH₃C(O)X⁻, where X = Cl⁻, H⁻, R⁻, OR⁻, NR₂⁻, O²⁻. The stabilities of this series are in the order: X = Cl < H < R < OR < NR₂ < O. 74

The insertion of boron into an Os-CO bond can be achieved by reaction (5), in which both B_2H_6 and $BH_3.NEt_3$ must be present.

$$(\mu-H_2)$$
 Os₃ (CO)₁₀ + $\frac{1}{2}B_2H_6$ $\xrightarrow{BH_3.NEt_3}$ $(\mu-H)_3$ (CO)₉ Os₃BCO + H_2 ... (5)

The structure is (<u>11</u>), with approximately C_{3v} symmetry. The BCO group is close to linearity, with a short B-C distance, suggestive of B+CO back-bonding, although this is not reflected in the vCO wavenumber, which is rather high (2120 cm⁻¹).⁷⁵

$$(OC)_{3}^{OS} \xrightarrow{B}_{OS (CO)_{3}} \\ (OC)_{3}^{OS} \xrightarrow{B}_{CMe_{3}} \\ (CO)_{3}^{OS} \xrightarrow{C=B-CMe_{3}} \\ (11)$$

The reaction of 1,1-bis(tert-butylchlorobory1)-2,2-bis(tri-methylsily1)ethene with Na/K alloy in boiling pentane gives a 60%

yield of $(\underline{12})$, the first compound containing a B=C double bond. The evidence for this came from n.m.r., especially the chemical shift of the boron atom. In addition, the Raman spectrum contained bands at 1675 cm⁻¹ and 1715 cm⁻¹, with an intensity ratio of 4:1, assigned to $v(^{11}B=C)$ and $v(^{10}B=C)$ respectively. ⁷⁶

 $\text{Co}_2(\text{CO})_8$ reacts with bis(alkynyl)boranes, forming dicobalthexacarbonyl η^2 -alkyne complexes with boryl substituents (13), where R = Me or CMe₃.

Crystals of tetrasodium tetra- μ_3 -hydrido-tetrakis(trimethylborate)diethyl ether solvate, [NaBMe $_3$ H] $_4$.Et $_2$ O, are monoclinic, space group P2 $_1$ /m. The Na and H atoms form a cubane-like structure. Each hydrogen is bonded to the boron of one BMe $_3$ group, forming a larger tetrahedron of boron atoms. ⁷⁸

Compounds containing the very bulky $(Me_3Si)_3C$ (=Tsi) group attached to boron have been prepared, e.g. $(Tsi)B(OMe)_2$ and $(\underline{14})$. The latter, with NaOH, gives $(Tsi)B(OH)_2$, while with MeLi, $(Tsi)BMe_2$ is formed. $(Tsi)AlCl_3$ and (Tsi)Ga(OH)Me were also reported.

$$(OC)_{3}^{CO} \xrightarrow{\stackrel{R}{\downarrow}}_{C} \xrightarrow{\stackrel{R}{\downarrow}}_{CO(CO)_{3}}$$

$$(OC)_{3}^{CO} \xrightarrow{\stackrel{C}{\downarrow}}_{CO(CO)_{3}} \xrightarrow{(DC)_{3}^{CO(CO)_{3}}}$$

$$(OC)_{3}^{CO} \xrightarrow{\stackrel{C}{\downarrow}}_{CO(CO)_{3}} \xrightarrow{(DC)_{3}^{CO(CO)_{3}}}$$

$$(OC)_{3}^{CO} \xrightarrow{\stackrel{C}{\downarrow}}_{CO(CO)_{3}} \xrightarrow{(DC)_{3}^{CO(CO)_{3}}}$$

The compounds BAr $_3$, where Ar = phenyl, o-tolyl or mesityl, form 1:1 coloured complexes with TCNE. The triarylborane donates π -electrons from the phenyl ring to a vacant antibonding orbital of TCNE. 80

Correlations of o-, m-, p-, and C(1) carbon resonances in phenylboranes, PhBXY, have been reported. The observed 13 C chemical shifts of para-carbons in such compounds show that shielding decreases in the order NHR ~ NR $_2$ > SR > OR > organyls > halogens. The reverse trend is found for the C(1) 13 C chemical shifts.

Borane complexes and arylmagnesium halides react to produce

arylborohydrides in good yield. These are readily hydrolysed to aryl boronic acids, $(aryl)B(OH)_2$, where aryl = phenyl or p-X-C₆H₄, (X = Me, MeO, Cl, Br etc.). This constitutes a very convenient synthesis for such compounds. 82

Na[BH $_3$ CN] and HCl in tetrahydrofuran give mainly Na[BH $_3$ CNBH $_2$ CN]. In Me $_2$ S, however, a quantitative yield of "BH $_2$ CN" was produced. The "BH $_2$ CN" in Me $_2$ S exists as monomeric and dimeric adducts, in equilibrium with oligomers. Amines convert these to BH $_2$ CN.amine adducts, while LiCN forms LiBH $_2$ (CN) $_2$.

The 1 H n.m.r. spectra of $[(CH_3C_5H_4)U(\mu-NCBH_3)]_n$ in non-coordinating solvents such as CH_2Cl_2 can best be explained in terms of temperature-dependent equilibria involving the two rapidly interconverting pseudo-tetrahedral isomers: $(CH_3C_5H_4)_3U(n^3-H_3BCN)$ and $(CH_3C_5H_4)_3U(NCBH_3)_*^{84}$

The kinetics and mechanism has been investigated for the hydrolysis of several cyano(pyrrolyl-1) borates in aqueous media, e.g. cyanophenyl(pyrrolyl-1) borate, cyano(tripyrrolyl-1) borate and cyanohydro(pyrrolyl-1) borate hydrolyse via two kinds of reaction: (a) a special H^+ -catalysed reaction, and (b) an S_N^- 1 mechanism, independent of the concentration of H^+ .

3.1.6 Compounds containing B-N, B-P or B-As Bonds

Ab initio calculations on methylenimino borane, $\rm H_2C=N-BH_2$, show that a linear, orthogonal form, (15), is preferred over the planar form, (16), by about 50 kJ mol⁻¹. This compares with the isoelectronic $\rm H_2B-O-BH_2$, for which the planar form is preferred. This shows the importance of B-N π -bonding, since the planar form would have a formally single B-N bond, with a lone pair of electrons localised at the N. 86

H C=N-B H
$$H$$
 $C=N$ H $C=N$ H $C=N$ H (15)

An amino-imino-borane, $(\underline{17})$, can be prepared in good yield by a three-stage reaction. It dimerises quite rapidly, but can be stored as a monomer in solution for several weeks. Addition of BCl $_3$ or BBr $_3$ forms four-membered cyclic internal coordination

complexes, $(\underline{1}8)$, X = C1 or Br. 87

$$\begin{array}{c|c}
 & X \\
 & X \\
 & B \\
 & N-CMe_3 \\
\hline
 & (17) \\
\hline
 & (18) \\
\end{array}$$
N-CMe₃

M.o. calculations suggest that $N(BH_2)_3$ is thermodynamically stable, the preferred conformation having two $N(BH_2)$ units coplanar, and the third perpendicular to them. However, dimers would be more stable than the monomer, especially with bridging hydrogen atoms. Calculations on the species $B_6(NH_2)_6$ suggest that a planar B_6 ring should be preferred.

There is some evidence for the formation of boron imides, ArB=NAr (where Ar = Ph, 2-Me- C_6H_4 , mesityl or C_6F_5), as intermediates in reactions of the diarylazidoboranes Ar₂BN₃.

Ab initio calculations on [LiBH(NH₂)₂] $^+$ show that the bridged structure (19) should be the most stable. 90

The u.v. spectrum of $(\underline{20})$ confirms the presence of the B...N coordinate bond. X-ray diffraction shows that the B...N distance of 162.9(7) pm is only 8.6% longer than that for the formal single bond also present in the molecule, (150.0(6) pm).

An improved synthesis has been reported for $(H_2NBH_2)_x$ - by the thermal decomposition of ammonia-borane in a pyrolysis tube attached to a commercial sublimer to avoid contamination by $H_3N.BH_3$. The product was characterised by X-ray powder diffraction, ^{11}B F.T. n.m.r. and i.r. spectra. 92

diffraction, 11 B F.T. n.m.r. and i.r. spectra. 92 Natural-abundance 1 N n.m.r. measurements on B(NHMe) 3 have given an estimate of 1 J(15 N 11 B) for this molecule (\geqslant -45±2Hz).

Tris(methylanilido)borane, (21), crystallises in the rhombohedral space group R3. The C₂BN plane is twisted by 37.1 $^{\circ}$ with

respect to the BN $_3$ plane. The B-N bond length (144.8(3) pm) is at the upper limit of BN bond lengths in other triaminoborane systems. 94

 $B(N=CBu^{t}_{2})_{3}$ contains "paddle-wheel" shaped monomers, with the $B(NC)_{3}$ and NCC_{2} planes perpendicular to each other, as expected for maximum N=B π -bonding and minimum $Bu^{t}_{-}Bu^{t}$ repulsions. The B-N bond distance is 1.39Å. (PhCH=NBMe₂)₂, prepared from benzonitrile and tetramethydiborane (2:1 molar ratio), forms centrosymmetric crystals, containing (22), with a B-N distance of 1.59Å.

Phenyl isocyanate reactions with 27 aminoboranes, PhB(NR₂)X, where $X = NR_2$, NHR, OR, SR or halogen, show that the relative migratory abilities of groups attached to boron are in the order:

nBuNH > N > Me₂N > Et₂N > Bu^tNH > N ; and also RS > RNH > R₂N > OR, Ph or halogen.
96

 13 C n.m.r. was used to study the effect of substituents on the free enthalpy of rotation about the B-N bond for the series of compounds PhB(NMe₂)X and PhB(NPr¹₂)X (where X = F, Cl, Br, OMe or SEt). When NR₂ is small - the barrier to rotation is governed mostly by the mesomeric and inductive effect of X. When NR₂ is bulky, the steric effect of X is more important. The rotational barrier decreases with increase in the bulk of NR₂. The rotational barrier results mainly from p_{π} - p_{π} N+B bonding, except when NR₂ is very bulky. 97

The synthesis of PhB(SEt)NR₂ has been reported, e.g. equation (6), where R = Me, Pr^{i} , Bu^{S} ; $R_{2} = -CH_{2}CHMe(CH_{2})_{3}$ or $-CHMe(CH_{2})_{4}$.

$$PhB(SEt)_{2} + R_{2}NH + PhB(SEt)NR_{2} + EtSH \qquad ...(6)$$

 $^{^{13}\}mathrm{C}$ n.m.r. data are consistent with restricted rotation about the

B-NR₂ bond. 98

The e.s.r. spectrum of ${\rm Et_3N}^+{\rm -BH_2}^+$ shows that it is non-planar at the boron atom. 99

Ab initio calculations have been carried out on BH3.NH3, using several different basis sets. The electron-correlated Møller-Plesset perturbation method, carried out to the third order (MP3), with double-zeta polarised quality basis sets, gave a computed geometry very close to that recently reported from microwave data. Electron correlation is needed for a proper description of the B-N distance.

The rotational barrier in BH₃.NH₃ was calculated by second-order perturbation theory using an <u>ab initio</u> bond-orbital method with experimental geometries, and the Pople STO-3G basis sets, and compared to CH₃CH₃. Despite their very different electronic structures, for both molecules the barrier is due chiefly to vicinal interactions arising from exchange-overlap repulsion between localised bonds having a closed-shell structure. ¹⁰¹

Charge distributions were calculated for alkylboranes and alkylamines and their adducts with (respectively) NH₃, and BH₃ by four different methods: (i) CNDO-MO-SCF method; (ii) Jolly and Perry procedure; (iii) MNDO method; (iv) modified Sanderson method. All gave reasonable results for the isolated alkyl compounds, but only (iv) gave even fair agreement with experiment for the adducts. ¹⁰²

E.s.r. and multinuclear $-(^1\text{H}, ^{10}\text{B}, ^{11}\text{B}, ^{14}\text{N})$ ENDOR spectroscopy were used to identify radical products of single electron transfer from LiBEt₃H, e.g. $(\underline{23})$.

$$\begin{bmatrix} Et_3B-N & H & BH_3 \\ (\underline{23}) & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

NaBH $_4$ and elemental sulphur in ammonia, primary, secondary and tertiary amines liberate hydrogen gas, and formation of the aminoboranes $R_{3-n}H_nN.BH_3$, where n=0-3. NaBH $_4$ reacts with carbon disulphide in tertiary amines to form $R_3N.BH_3$.

The bis(borane) adduct of the cyclic phosphorane is shown to

have the structure $(\underline{24})$. The complex is extremely stable, and it is the first compound for which the pattern ${\rm H_3B-N-P-N-BH_3}$ has been observed. 105

Trimethylphosphine and B_4H_{10} , in 1:1 molar ratio, react in THF at -90°C to -70°C , to give $Me_3P.BH_3$, THF. B_3H_7 and $\left[H_2B(\text{THF})_2\right]^+B_3H_8^-$. Very little $Me_3P.B_3H_7$ was formed. The reaction was then carried out in Me_2 O, Et_2 O and CH_2Cl_2 , and the product distribution patterns compared. The reactions can be rationalised in terms of previous suggestions about the mechanisms of B_4H_{10} cleavage reactions. 106

A detailed analysis has been given of the infrared and Raman spectra of $\mathrm{CH_3CH_2PH_2.BH_3}$, $\mathrm{CH_3CH_2PD_2.BH_3}$, $\mathrm{CH_3CH_2PH_2.BD_3}$ and $\mathrm{CH_3CH_2PD_2.BD_3}$. Both gauche and trans rotational isomers were seen in fluid states. Bands from the more stable trans conformer were assigned in terms of $\mathrm{C_s}$ symmetry. 107

Excess trimethylphosphine and hexaborane(10) form the species "B $_6$ H $_1$ O". This was shown to consist of a mixture of B $_2$ H $_4$.2PMe $_3$, B $_4$ H $_6$.4PMe $_3$ and B $_3$ H $_5$.3PMe $_3$.

 $B_4H_9.PMe_3$ was formed by the reaction of B_4H_9 and trimethylphosphine in THF. The new anion is stable below $0^{\circ}C$. N.m.r. data suggest a non-rigid trigonal pyramid structure, with the phosphine attached to the apical boron, (25).

 $Cp(CO)_2(L)M-AsMe_2$, where M = Mo or W; L = CO or PMe₃, and BH₃.THF form $Cp(CO)_2(L)M-AsMe_2.BH_3$. The products were characterised by 1H , ^{11}B n.m.r. and infrared spectroscopy. 11O

3.1.7 Compounds containing B-O, B-S or B-Se Bonds

SCF-CI and second-order MBPT calculations were used to study interactions of $B(ls^22s^22p;^2P)$ with H_2O . The pathway (7) proceeds with only a small (<12 kcal.mol⁻¹) barrier in the $B.OH_2 \rightarrow HBOH$

$$B + H_2O \rightarrow B \cdot OH_2 \rightarrow HBOH \rightarrow BO(X^2\Sigma) + H_2$$
 ...(7)

step. The formation of BO(A $^2\pi$) + H $_2$ requires much higher barriers. Configuration-interaction calculations were reported for the first 3 doublet states of BO $_2$. These gave excellent agreement with experimental data, and the position of the C $^2\Sigma_g^+$ state was predicted. 112

Vertical ionisation potentials for the linear polyatomics X-B=0 and X-B=S, where X=H, F, or Cl, have been computed by applying a Rayleigh-Schrödinger perturbation correction to Koopman's theorem. It is believed that the theoretical values will assist in the identification of the, as yet, unobserved photoelectron spectrum of XB=0.

The chemical properties of boron suboxide, $B_6^{\,\,0}$, have been compared with those of α -boron. The greater reactivity of $B_6^{\,\,0}$ towards acids is explicable in terms of its crystal structure. 114

The room-temperature electron-density distribution in ${\rm LiBO}_2$ has been found by X-ray diffraction. A simple model has been devised for bonding in the "LiBO₂ molecule", with polymerisation of these units to form infinite chains of BO₃ triangles held together by electrostatic forces. 115

Raman spectra of alkaline lithium metaborate solutions in ${\rm H_2O}$ contain lines assignable to a peroxoborate anion B(OH) $_3$ (OOH) (with vO-O at 890 cm $^{-1}$) in equilibrium with B(OH) $_4$ and ${\rm H_2O}$. There was no evidence for the formation of peroxoborate acids at low pH values. 116

Bis (pyrocatecholato) borates, M[(C₆H₄O₂)₂B], where M = Na, K or NH₄, have been prepared and characterised. At 25 °C, solubilities of these in water follow the sequence: Na⁺ > NH₄ + > K⁺. ¹¹⁷ It proved to be possible to isolate potassium bis (4-methylcatecholato) -borate(III), K[(CH₃C₆H₃O₂)₂B], even from solutions with only small concentrations of (CH₃C₆H₃O₂)₂B⁻. Stability constants for the complex were measured. ¹¹⁸

fac-(OC)
$$_3$$
Re $_{\text{CH}_3}$ $_{\text{CH}_3}$

X-ray molecular structural determinations have been carried out on $[fac-(OC)_3Re(CH_3CO)_3]BX$, where X = Cl or Br. These show that the triacetylrhenato ligand acts as a trioxygen, vicinal bifurcated chelating ligand with approximately C_{3v} symmetry. There are, however, significant differences for X = Cl and Br. The former may be represented as $(\underline{26})$, the latter as $(\underline{27})$.

Ab initio calculations using extended basis sets (6-31G**, DZ+P) have been reported for diboron trioxide, $O(BO)_2$, and dicyanoether, $O(CN)_2$. Both are calculated to have V-shaped structures (C_{2V} symmetry) at equilibrium. The barrier to inversion at the central oxygen is very low for $O(BO)_2$, ca. 2 kcal.mol⁻¹, however, compared with that for $O(CN)_2$, 20 kcal.mol⁻¹.

Low wavenumber Raman spectra have been obtained for molten and vitreous B_2O_3 . Bands in the range 0-300 cm⁻¹ are due to motions of large assemblies of atoms, and these do not change significantly when the B_3O_6 ring units break up with increasing temperature, as shown by the decrease in intensity of the B_3O_6 ring mode at ca. 800 cm⁻¹. 121

The crystal structure of oxybis (dimesitylborane), $(MeS_2B)_2O$, has been obtained. The B-O-B angle is $165.5(12)^O$, and the B-O bond length $1.36(2)^O$. It provided the first confirmation by X-ray diffraction of the "bent-twisted" geometry in $(R_2B)_2O$ systems. 122

Some tentative assignments have been proposed from the Raman and infrared spectra of ${\rm Mg_2B_2O_5}$, based on ${\rm ^{10}B/^{11}B}$ isotopic shifts. ${\rm ^{123}}$

The novel, triply-bridged diborate ester: $B(OCH_2C_3H_4CHO)_3B$, was prepared by the reaction of trans-1,2-cyclopropanedicarboxylic acid and BH_3 . THF. A single crystal X-ray study shows that it crystallises in the hexagonal system (space group $P6_3$). The molecular symmetry is C_3 , with the cyclopropane bridges imposing helicity. Infrared, Raman and vibrational circular dichroism (VCD) spectra of the compound were obtained and correlate with those of previously studied disubstituted cyclopropanes. 124

 $B_2O_3.SO_3$ and $B_2O_3.2SO_3$ can be obtained by heating B_2O_3 in liquid $SO_2.$ The infrared and ^{11}B n.m.r. spectra of both compounds showed that SO_4 and BO_3 groups were present, as well as distorted BO_4 tetrahedra. The structures are therefore polymeric. 126

The interaction of boric acid and dimethylamine at 25° C gave the crystalline product Et₂NH. $^{5/2}$ B₂O₃. 3 H₂O. This contains a cyclic anion (not fully characterised) with both 3- and 4-coordinate boron atoms. 127

 $Pb_4O[Pb_2(BO_3)_3C1]$ forms orthorhombic crystals, space group Pbcm. The structure is built up from Pb_4O tetrahedra, Pb-Pb "dumb-bells", isolated BO_3 planar groups, and $C1^-$ ions. 128

Thermal transformations have been elucidated for inderborite, a calcium magnesium hydroxoborate containing the $\left[B_3O_3\left(OH\right)_5\right]^{2-}$ anion. The B $_3O_4\left(OH\right)_2$. O·5H $_2O$ forms orthorhombic crystals, space group Pnma. The anion is formed from one tetrahedron and two triangles. These are linked to produce an infinite $\left[B_3O_4\left(OH\right)_2\right]_n^{n-}$ chain twisted around and along the 2_1 axes. Dehydration and annealing produces TIB $_3O_5$, with a three-dimensional network built up of B $_3O_3$ units, formed by one tetrahedron and two triangles. 130

The interaction of orthoboric acid and diethylene triamine has been studied at 25° C. The compound $[\text{NH}(\text{C}_2\text{H}_4\text{NH}_3)_2][\text{H}_4\text{B}_3\text{O}_7]_2.4\text{H}_2\text{O}$ was isolated. 131

An X-ray structural determination of $[enH_2][H_4B_4O_9]$ showed that the anion possesses the structure (28). 132

The reaction of excess boric acid and potassium fluoride in aqueous solution gives as final product $K[B_5O_6(OH)_4].2H_2O.^{133}$ Borates of ethylenediamine and hexamethylenetetramine, containing the anion $B_5O_6(OH)_4$, decompose to their components in aqueous solution. 134

127- and 160-MHz 11 B n.m.r. spectra have been obtained for aqueous solutions of KB₅O₈.4H₂O, K₂B₅O₈(OH).2H₂O, K₂B₄O₇.4H₂O or NaB₅O₈.5H₂O. Separation of all 3 signals in solutions of MB₅O₈ (M = Na or K) enabled formation constants to be calculated for B(OH) $_4$, B₃O₃(OH) $_4$ and B₅O₆(OH) $_4$. B₄O₅(OH) $_4$ was not detected. Higher-temperature spectra show that dissociation of polyborate

complexes occurs. $B_5O_6(OH)_4^-$ gave a signal due to tetrahedral boron only, as the trigonal boron resonances were not observed. 135 Crystals of $Na_6Co_3[B_6O_7(OH)_6]_6.26H_2O$ are triclinic, space group $P\bar{1}$. The structure belongs to the class of soroborates - consisting of hexaborate groups, between which the cobalt atoms are octahedrally coordinated. 136 The species $Na_6[Cu_2\{B_{16}O_{24}(OH)_{10}\}].-12H_2O$ also forms triclinic crystals (space group $P\bar{1}$). The structure contains the largest known isolated borate anion. Each anion is ring-like, and encloses two Cu^{2+} ions. 137

EHMO calculations on B_8S_{16} , the porphine diamion and ${\rm Cu}^{2+}$ complexes of both macrocycles have been performed. The results suggest that the ${\rm Cu}^{2+}$ complex of B_8S_{16} may have some stability, but these conclusions depend both upon inclusion of 3d AO's of sulphur in the basis set and upon the choice of semi-empirical parameters for these AO's. 145

Dynamic n.m.r. studies on (29), where R = Me or Ph, provide evidence for B_-x π -back-bonding in the sequence S \gtrsim Se > 0. 146

3.1.8 Boron Halides

The gas-phase reaction of BF $_3$ with Me $_3$ N.MH $_3$, where M = Al or Ga, was studied using a combined matrix-isolation i.r. spectrometer/mass spectrometer. The initial reaction products were BF $_2$ H and NMe $_3$; no MH $_3$ was detected. The reaction is a halide/hydride exchange, not a Lewis-acid replacement. 147

The symmetry of BF_3^{+} in its nondegenerate ground state is

predicted to be lowered by two-mode pseudo-Jahn-Teller interaction with the second excited state. $^{1\cdot4\,8}$

Ab initio S.C.F. m.o. calculations have been carried out for BF $_3$. The potential minimum occurs for a B-F bond length of 1.442Å. The calculated barrier to inversion is 28 kcal.mol $^{-1}$. 149 15 N and 11 B n.m.r. spectra were reported for NMe $_3$ adducts of mixed boron trihalides. The values for $J(^{11}B-^{15}N)$ all lie within a narrow range, but they correlate well with $\delta(^{1}H)$, $\delta(^{13}C)$, $J(^{1}H-^{11}B)$ and $J(^{11}B-^{19}F)$, although less well with $\Delta\delta(^{11}B)$ (the complexation shift) parameters. $\delta(^{15}N)$ and $\delta(^{11}B)$ are dependent mainly on halogen-induced effects. Species containing fluorine give values falling on a separate curve from the other halogens. 150 Complexes of 3- or 4-substituted pyridines with BF $_3$ or BBr $_3$ have

Complexes of 3- or 4-substituted pyridines with BF $_3$ or BBr $_3$ have been synthesised, and their infrared and 11 B n.m.r. spectral data reported. For a given haloborane the 11 B chemical shifts are all very similar, suggesting similar stabilities for the complexes. However, the 3- and 4-cyano-pyridine complexes are slightly less stable than the 3-halo-pyridine adducts. 151

 1 H and 19 F n.m.r. studies on Me₂SO.BF₃ and (CD₃)₂SO.BF₃ show that the two methyl groups are dynamically non-equivalent within the molecule, and re-orient at or above 77K, about their C₃ axes, but with different frequencies. The BF₃ group is rigid at 77K, but above 135K it re-orients about its C₃ axis (activation energy 15.9 kJ.mol⁻¹. 152

The stability of the hydroperoxofluoroborates, BF $_n$ (OOH) $_{4-n}^-$ (n = 4,3,2 or 1), has been studied by $^1{\rm H}$, $^{11}{\rm B}$, $^{19}{\rm F}$ n.m.r. BF $_3$ (OOH) is significantly more stable than the di- and tri-hydroperoxospecies. 153

Solubility was studied in the systems MBF_4 - MBH_4 - H_2O , where M = Na or K. RbBF $_4$ -RbX (X = F, Cl or NO_3) systems have all been shown to be eutectic. 155

N.m.r. studies of B_2F_4/B_2Cl_4 or B_2Cl_4/B_2Br_4 mixtures show extensive ligand exchange in the latter, but less in the former. It was not possible to assign spectra due to individual mixed halide compounds. BI_3 and B_2Cl_4 react to give an almost quantitative yield of B_2I_4 . N.m.r., infrared and mass spectral data were given for the B_2I_4 . 156 1 H, 11 B, 13 C and 31 P n.m.r. data were used to characterise the

¹H, ¹¹B, ¹³C and ³¹P n.m.r. data were used to characterise the systems formed between BCl₃ and $R_{\chi}(R'O)_{3-\chi}MO$, where M = N, P or As, i.e. the initial 1:1 adducts and also subsequent condensation

products. 157

Magic-angle rotation suffices to narrow 11 B n.m.r. lines for solid tetrahaloborates so that the peaks from different ions could be resolved. It has possible to obtain detailed structural information for a sample containing $[BCl_nBr_{4-n}]^-$, n = 0-4. 158

3.1.9 Boron-containing Heterocycles

The reaction of C_8K with MeBBr₂ and ^tBuC \equiv CBu^t in benzene gave the borirene (30) both under reflux and at room temperature. At room temperature, however, a species ^tBu₂C₂(BMe)₂ was also formed. Mass spectral evidence suggested that this is a 1,3-diboretene, probably with the structure (31). The borirene appears to be reasonably stable both under reflux and in mass spectral experiments. ¹⁵⁹

The first 2-borolenes, $(\underline{32})$, where R = NPr 1_2 or Ph, have been prepared by the catalytic isomerisation of the corresponding 3-borolenes, $(\underline{33})$, by $[(C_2H_4)_2RhCl]_2$. Larger quantities of the catalyst led to formation of $(\underline{34})$.

The system $2C_8K/MeBBr_2$ can be used to generate methylborolene, which is trapped by cyclohexene, to form (35).

$$\begin{array}{c}
\text{Et} \\
\text{Et} \\
\text{R-B}
\end{array}$$

$$\begin{array}{c}
\text{B-R} \\
\text{(35)}
\end{array}$$

$$\begin{array}{c}
(\underline{35})
\end{array}$$

The compounds $(\underline{36})$, where R,R' = Me, Et or H, were used to form triple-decker sandwich complexes related to CpM(μ -C $_3$ B $_2$ H $_5$)M'Cp, where MM' = FeCo, CoCo, CoNi, NiNi. The neutral complexes can be oxidised or reduced to form charged species. Several other reactions were reported, including the formation of the quadruple-decker species performed on several of the complexes, and correlated with X-ray results etc. 162

The thermal reaction of 1-phenyl-4,5-dihydroborepin with $\operatorname{Mn_2(CO)}_{10}$ produces (37). The analogous reaction with $\left[\operatorname{CpFe(CO)}_2\right]_2$ forms, among other products, (38) and (39). The mechanism for the formation of the borabenzene was not elucidated. 163

The second known example of the six π -electron borole diamion can be prepared by reaction (8). This in turn can form an

$$\begin{array}{c|c}
& \xrightarrow{+2^{t}_{BuLi}} & \text{Li}_{2} \\
\hline
& & \\
& & \\
\end{array}$$

$$\begin{array}{c}
& \\
& \\
\end{array}$$

$$\begin{array}{c}
& \\
& \\
\end{array}$$

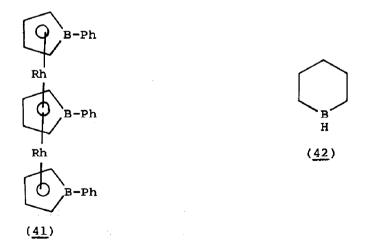
$$\begin{array}{c}
\\
\end{array}$$

$$\begin{array}{c}
& \\
\end{array}$$

$$\begin{array}{c}
\\
\end{array}$$

$$\begin{array}{$$

eighteen-electron sandwich complex, acting as an $\eta^5\text{-ligand}$ in (40). 164


The oxidation of crystalline, paramagnetic bis 1-allyl(trimethylsilyl)-2-methyl- η^5 -1,2-azaborolinyl cobalt complexes by the ferricenium cation, equation (9), R = Me or CMe $_3$, leads to the formation of diamagnetic, eighteen-electron cobalticinium cations. 165

A new general route has been reported for the preparation of

$$\begin{array}{c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

 $(\eta^5$ -borole)metal complexes, i.e. B-Ph with $Ru_3(CO)_{12}$,

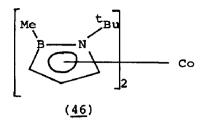
 ${
m Ru}({
m C_6H_6})\,({
m C_6H_8})$, ${
m Mn_2}\,({
m CO})_{10}$ or $\left[({
m C_2H_4})_2{
m RhCl}\right]_2$. All of the products are shown to contain pentahapto-borole rings (using $^{11}{
m B}$ n.m.r. spectroscopy). The rhodium complex is triple-decked, $(\underline{41})$. In this complex the $^{11}{
m B}$ resonance of the central ring is at higher field than that from the outer ligands, and less broadened by nucleus quadrupole relaxation. 166

Borinane, $(\underline{42})$, can be prepared conveniently by the hydroboration, using 2 molar equivalents of 9-borabicyclo[3.3.1]-nonane (9-BBN), of 1,4-pentadiene, followed by treatment with

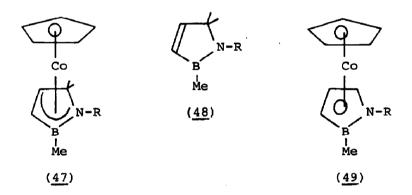
BH3.THF or BH3.SMe2. 167

Radical-initiated hydrophosphination or hydroarsination of diethylaminodialkynylboranes using $PhEH_2$ (where E = P or As) produces (43), 1-phospha- or 1-arsa-4-boracyclohexadiene-2,5. The arsenic derivative is reduced by excess $PhAsH_2$ to the dihydroderivative. 168

Non-parametrized m.o. calculations have been performed on the borabenzene anion, $C_5H_6B^-(BBz^-)$, and its sandwich complexes $(BBz)_2Fe$, $(BBz)_2Co$. The π -electrons in BBz^- are delocalised. The main bonding interactions between BBz^- and M are similar to those in metallocenes and arenes. Transition metal 4p orbitals contribute significantly to the metal-ring bonding. The sequence of predominantly 3d m.o.'s in both complexes is : $d_\delta(x^2-y^2,xy) < d_\sigma(z^2) << d_{\pi^*}(xz,yz)$. The observed "slippage" in the structure (in which Fe is nearer to C than to B) can be rationalised. There was some evidence that the most favoured conformation has trans boron atoms. 169


 $Na[C_5H_5BMe]$ reacts with $Cr(CO)_3(NH_3)_3$ to produce a species containing the anion, $(\underline{44}).^{17O}$

$$\begin{bmatrix}
Cr \\
(CO)_3 \\
(44)
\end{bmatrix}$$
Fe
$$\begin{bmatrix}
A_1 \\
Me
\end{bmatrix}_2$$


(Borinato) (cyclobutadiene) cobalt complexes can be prepared from $Co(C_5^H_5BR)$ (1,5- $C_8^H_{12}$) and the alkynes $C_2^R_2^1$, or from $(C_4^{Me}_4)Co(CO)_2^1$ and $Tl(C_5^H_5BR)$.

Bis (2-methyl- η -1,2-azaborolinyl) iron and related species, (45), where R = H, Me or Et, are prepared from the N-SiMe₃ precursor <u>via</u> lithiation at nitrogen, followed by treatment with Bu^tOH (for R =

H) or RX (for R = Me or Et). 172

Crystal and molecular structures of 2 isomers of $(\underline{46})$, [bis(1-tert-buty1)-2-methy1- η -1,2-azaboroliny1] cobalt have been determined. One isomer has a clockwise, the other an anti-clockwise conformation of the azaboroliny1 rings. In both cases the N-Bu^t groups are staggered. The three ring carbon atoms are closer to the Co than are N or B. 173

The substituted 2-methyl- Δ^3 -1,2-azaboroline ligands act as four-electron donors in the sandwich complexes (47), where R = CMe₃ or SiMe₃, are prepared from (48) and CpCo(C₂H₄)₂ at -78°C. Warming to 20-25°C leads to proton loss and formation of η^5 -1,2-azaborolinyl complexes, (49).

Diboryl compounds, $R(C1)B(CH_2)_nB(C1)R$, where R=C1 or Me, n=2 or 3, and the silylated or stannylated species $(Me_3Y)_2X$, (Y=Si or Sn; X=S, NMe, O, -NMe-NMe-) can be used in (5+1)- and (4+2)-cyclocondensation reactions. No thiadiborinanes are formed, but varying yields of B/N and B/O heterocycles are formed, e.g. monomeric and dimeric (50).

 13 C n.m.r. spectra have been assigned for (51), and related borazines. π -Charge densities from LCAO-MO Hückel calculations were in reasonable agreement with experimental chemical shifts. 176

The reaction of 1,2,4-trithia-3,5-diborolanes with alkynes does not give 1,3,2-dithiaboroles, as previously suggested, but the hitherto unknown 1,2,3-dithiaboroles, e.g. $(\underline{52})$, and R-CEC-R' (where R = R' = Ph, Et etc) produce $(\underline{53})$.

 $M(CO)_5$ (THF), where M = Cr or W, react with Bu-B=N-Bu^t to form $(\underline{54})$, in which the non-planar diazaboretidine is acting as a four-electron donor. ¹⁷⁸

$$(OC)_{4}M \xrightarrow{B}_{N} B_{U}$$

$$\downarrow_{B_{U}} N \xrightarrow{B}_{B_{U}} B_{U}$$

$$\downarrow_{B_{U}} C1$$

$$\downarrow_{C1} N \xrightarrow{C1}_{N} C1$$

$$\downarrow_{C1} N \xrightarrow{C1}_{N} O$$

$$\downarrow_{C1} N \xrightarrow{C1}_{N} O$$

$$\downarrow_{C1} N \xrightarrow{C1}_{N} O$$

$$\downarrow_{C1} O$$

$$\downarrow_{C1}$$

X-ray structural determinations for the pyrazaboles $(\underline{55})$ and related derivatives show that the central B_2N_4 ring can adopt chair, boat or planar conformations - dependent upon the substituents. Thus packing effects determine the ring conformation. 179

 $(\underline{56})$ is stereochemically non-rigid at ambient temperature, with the methyl group located at either C(3') or C(5') of the pyrazole

ring. (57) was also prepared, and characterised by n.m.r. 180
Binary metal ylide complexes can be formed by the sequence (10),

where M = Mn or Co. Magnetic measurements show normal high-spin T_d behaviour for the M atom. The i.r. spectra are very different at low wavenumbers from the square-planar d^8 analogues. A single crystal X-ray diffraction for M = Mn confirms the structure shown. 181

X-ray structural determinations have been performed on $(\underline{58})$, where R = H or Me; these confirm that the boron atoms are four-coordinate. 182

Intramolecular N-B coordination was demonstrated by dynamic 1 H and 11 B n.m.r. data for the thexylboronic esters $(\underline{59})$. 183 The new boron-containing heterocycles $(\underline{60})$, where R = $(CH_2)_2OH$,

(CH₂)₃OH, CH₂COOH etc, can be prepared from salicylaldehyde, the

amine component and diphenylboronic anhydride. 184

The crystal structure of 4-isopropylidene-2,5,5-triphenyl-1,3-dioxa-4-azonia-2-bora-5-boratacyclopentane confirms the structure (61). The five-membered ring is almost planar, containing both trigonal and tetrahedral boron atoms. 185

Phenylboronic acid, N-alkylhydroxylamines and formaldehyde form bisphenylboronates of N,N'-methylenebis(N-alkylhydroxylamines), ($\underline{62}$), where R = Me, Et, Prⁿ, Prⁱ, C₆H₁₁ or CH₂Ph. The presence of the transannular B-N bond was confirmed by infrared and 1 H n.m.r. spectra. 186

Ph-B
$$\bigoplus_{Ph}^{R}$$
 \bigoplus_{Ph}^{N-R} $\bigoplus_{Ph}^{R^2}$ \bigoplus

The crystal structures of $(\underline{63})$, where $R^1=R^2=H$, or $R^1=C_6H_{11}$, $R^2=CH_3$, show that these are the first examples of coordination complexes derived from 2-hydroxypyridine-N-oxide. The tetrahedrally-coordinated boron is in a five-membered OBOCN ring. 187

Nitrones of salicylaldehyde react as bidentate ligands in forming seven-membered heterocycles with a B,N-betaine structure, e.g. $(\underline{64})$, where R = CH₃, CH₂Ph, C₆H₁₁, Ph or 4-ClC₆H₄. ¹⁸⁸

Pinacol(trimethylsilyl)methaneboronate, $(\underline{65})$, is prepared from (trimethylsilyl)methylmagnesium chloride. It appears to have a very useful synthetic potential. 189

Trimeric alkoxydifluoroboranes, $(F_2BOR)_3$, react with cyanuric acid anhydrides to form monocyclic acyloxyfluoroboranes such as $(\underline{66})$, where R = Me or Et; R¹ = Me, Et or Pr¹. The crystal structure for R = R¹ = Me was determined - this shows that two conformational isomers of the six-membered ring are present i.e. planar and non-planar. 190

It has been shown that the previously reported 1,3,2-dioxaborinium cations containing three-coordinate boron are in fact tetracoordinated coordination compounds, i.e. $(\underline{67})$, where R = Ph, Me; X = ClO $_4$ or SO $_3$ CF $_3$, rather than $(\underline{68})$. Thus, n.m.r. spectra show four-coordinate boro , while for X = ClO $_4$ infrared bands due to a unidentate perchlorato ligand were seen.

Me s
$$\stackrel{\text{H}_2}{=}$$
 $\stackrel{\text{S}}{=}$ $\stackrel{\text{Me}}{=}$ $\stackrel{\text{M$

A new boron ring system, 1,4-dimethyl-1,4-dithionia-2,5-diboratacyclohexane, is prepared from Me₃N.BH₂CH₂SMe and methyl iodide, and the subsequent thermal decomposition of the resulting sulphonium salt. X-ray diffraction studies show that in the solid state the conformation is $(\underline{69})$, i.e. both the methyl groups are equatorial.

3.1.10 Boron Carbide and Metal Borides

A study of electronic band structures, and density-of-states plots, were used in a discussion of bonding in $\mathrm{B}_{13}\mathrm{C}_2$. It was suggested that inter-icosahedral bonds are much stronger than intra-icosahedral ones. The B-C bonds lying in the CBC chain show slight multiple-bond character. Calculations for models of $\mathrm{B}_{12}\mathrm{C}_3$ suggest that a structure in which a carbon atom is substituted into the icosahedron is more stable than the one in which the chain bonding consists of carbon atoms only. 193

A study has been made of the homogeneity ranges of ${\rm LaB}_6$, ${\rm EuB}_6$ and ${\rm SmB}_6$ with changes in cell dimensions with changing composition.

The charge density distribution in ${\rm LiAlB_4}$ was investigated by X-ray diffraction. The net charge distribution was found to be ${\rm Li^+(Al^{1.7+})_{O.96}(B_{12})^{1.2-}.2B^{O.7-}}$ from a population analysis of valence electrons. However, charge integration around the metal atoms gave net charges ${\rm Li^{O.7+}}$, ${\rm Al^{1.5+}}$. The results indicate that the ${\rm LiAlB_4}$ structure is stabilised by charge transfer from the metals to the electron-deficient boron framework. 195

3.2 ALUMINIUM

3.2.1 Aluminium Hydrides

Calculations on AlH⁺ were used in estimating the abundances of aluminium-bearing molecules in interstellar clouds. ¹⁹⁶

AlH₃ reacts with CaH₂ or NaAlH₄ and CaCl₂ in THF to form Ca(AlH₄)₂.4THF (monoclinic, space group P2₁/n). ν Al-H is at 1715 cm⁻¹. Desolvation produces Ca(AlH₄)₂.0·3-0·5THF as final product (ν Al-H at 1800 cm⁻¹). ¹⁹⁷

X-ray crystal structure determinations have been carried out for $H_{3-n}Al\left(NMe_2\right)_n$, (n = 1, 2 or 3). For n = 1, the molecule is trimeric, with a six-membered ring-chair conformation. For n = 2 or 3, dimers are formed, containing planar four-membered rings. Infrared and Raman spectra of the compounds with n = 2 or 3 show that the mutual exclusion rule applies, confirming their centrosymmetric nature in solution. Solid-phase spectra show a breakdown of this rule. Some mode assignments were proposed. 198

AlH₃.NEt₃ reacts with Cp₂YCl in C₆H₆ to give (Cp₂YCl.AlH₃.- NEt₃)₂. The crystal structure of this shows it to be a Cp₂YCl dimer bonded to the AlH₃.NEt₃ group $\underline{\text{via}}$ hydrogen bridges (Y-H-Al), as well as by a weak, "secondary" Al...Cl bond. 199

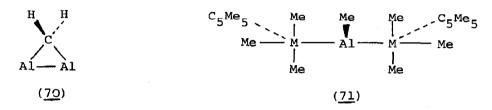
A new simple method has been devised for the accurate titration of solutions of ${\rm LiAlH_4}$ in diethyl ether. It is based on the reaction of benzyl alcohol with the deep-violet complex formed between ${\rm LiAlH_4}$ and 1,10-phenanthroline in THF, in the presence of ${\rm Mg}^{2+}$. 200

LiAlH $_4$ reacts with CO $_2$ or NaHCO $_3$ at about 500K to give CH $_4$ and C $_2$ H $_4$ as the primary products. These are presumably the explosive products formed by using CO $_2$ fire-extinguishers on LiAlH $_4$ fires. 2O1

Interaction has been studied in the system $Sr(AlH_4)_2$ - di(2-methoxyethyl) ether, in the temperature range -65°C to +100°C. The octasolvate $Sr(AlH_4)_2$.8DG is formed, which converts to $Sr(AlH_4)_2$.4DG at $10^{\circ}C$.

(Cp₂TiCl)₂ and LiAlH₄ in aromatic solvents form a stable compound thought to be a complex consisting of a linear, polynuclear form of Cp₂TiAlH₄, with Cp₂TiH side groups characterised by e.s.r. Small amounts of binuclear species (Cp₂TiH₂AlCl₂,Cp₂TiH₂Al(Cl)H,Cp₂TiH₂AlH₂) are also formed successively.

3.2.2 Compounds containing Al-C or Al-Si Bonds

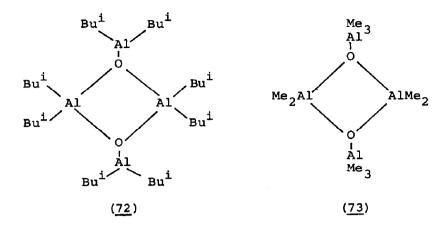

²⁷Al n.m.r. was used to probe the coordination geometry for aluminium atoms in organo-aluminium compounds (with the aluminium in sites of 3-, 4-, 5- and 6-fold coordination). The chemical shift (δ (²⁷Al)) ranges were found to be as follows: 3 C.N., 256-276 ppm; 4 C.N., 146-167 ppm; 5 C.N., 112-126 ppm., 6 C.N., (Al(acac)₃) O ppm.

<u>Ab initio</u> calculations on Al^+/CO interaction suggest that both $Al-CO^+$ and $Al-OC^+$ are stable, but that the stabilisation energies are very low (ca. 20 kJ.mol⁻¹).

M.O. calculations (using double-zeta (DZ) and DZ + polarisation basis sets, in conjunction with SCF and CI methods) suggest that in Al_2CH_2 the lowest-energy arrangement has a bridging methylene group, and that the CH_2 and Al_2C planes are perpendicular, (70). The calculated bond distances were Al-C, 2.00%; Al-Al, 3.61%, with \angle HCH = 105.5° . The terminal structure, $Al-Al-CH_2$, was calculated

to be ca. 46 kcal.mol⁻¹ higher in energy.²⁰⁶

Vapour-pressure data have been collected for Me₂AlCl and MeAlCl₂. Ethylaluminium analogues decomposed under comparable conditions. Hydrolysis of R₃Al (where R = Me, Et or Buⁱ) in Et₂O takes place in several steps. The first gives a complex R₃Al.OH₂. This then gave R₂AlOH. Subsequent stages were dependent on the ratio R₃Al:H₂O. If this is 1:1, then R₂AlOH forms stable autoassociates, but if it is 2:1, then R₂AlOH reacts with the excess R₃Al to produce alkylaluminoxanes. 2O8



The amphoteric ligands $Ph_2PNRAlR'_2$ react with alkylmetal carbonyl complexes, inducing facile migrations. Thus $Ph_2PN-Bu^tAlEt_2$ and $CpFe(CO)_2Me$ give as main product the chelated acyl complex $Cp(CO)Fe[C(Me)OAlEt_2NBu^tPPh_2]$, as well as a little $Cp(CO)Fe[O(CH=CH_2)AlEt_2NBu^tPPh_2]$. An intermediate leading to these was isolated, and X-ray diffraction showed it to be $Cp(CO)Fe[C(Me)OAlEt_2NBu^tPPh_2]$. This consists of a five-membered heterocycle, $C(Me)OAl(Et)_2N(Bu^t)P(Ph)_2$, bounded in an $n^2(C,O)$ manner to a Cp(CO)Fe fragment.

 $Ph_2PNBu^tAlR_2$ (where R = Me or Et) and $HMn(CO)_5$ form $(OC)_4Mn(CHOAlR_2NBu^tPPh_2)$, in which a net migration of H from Mn to CO has occurred. This migration occurs indirectly, however, via an initial proton transfer from Mn to P. The products react with further starting material (when R = Me) to give $(OC)_3Mn(CHOAlMe_2AlBu^tPPh_2)[PPh_2NBu^tAl(HCH_2)CH_3]$, in which a C-H bond from an Al-Me group is coordinated to manganese.

" R_2Al_2O ", where R = H, Me, Et or Bu^1 , have structures containing bridging R as well as bridging O groups, except for R = Bu^1 . Here the structure is (72). The order of bridging ability is R = H > Me > Et >> $Bu^1 \cdot 212$

Trimethylaluminium methylates $(AsMe_2O_2)^-$ to form $[AsMe_4]$ -

[Me₂AlO.AlMe₃]₂. The aluminoxane anion consists of a planar Al₂O₂ ring, with AlMe₃ molecules coordinated to oxygen atoms. 213

The unusual anion, $[{\rm Al}_7{\rm O}_6{\rm Me}_{16}]^-$, is found in the decomposition of two different high-oxygen content organoaluminium compounds, i.e. ${\rm K}[{\rm Al}_2{\rm Me}_6{\rm O}_2]$ and ${\rm Cs}_2[{\rm Al}_2{\rm Me}_6{\rm O}]$. ${\rm K}[{\rm Al}_7{\rm O}_6{\rm Me}_{16}]\cdot {\rm C}_6{\rm H}_6$ forms triclinic crystals, space group ${\rm PI}$, while ${\rm Cs}[{\rm Al}_7{\rm O}_6{\rm Me}_{16}]\cdot {\rm 3C}_6{\rm H}_5{\rm Me}$ crystals are cubic, space group ${\rm P2}_1{\rm 3}$. The anion consists of an open ${\rm Al}_6{\rm O}_6$ cage, capped by the seventh aluminium atom, which is bonded to three adjacent oxygen atoms in the cage. The six cage aluminium atoms are each bonded to two terminal methyl groups, while the unique Al is bound to only one methyl. Each oxygen atom is three-coordinate, as the oxygens not bound to the unique Al bridge two aluminium atoms and are also coordinated to one methyl group each. 214

X-ray structural determinations have been carried out on $(\text{Me}_3\text{Si})_3\text{Al.OEt}_2$, $\text{NaAl}(\text{SiMe}_3)_4$ and $\text{NaAl}(\text{SiMe}_3)_4.2\text{C}_6\text{H}_5\text{Me}$. In all three the aluminium atom is tetrahedrally coordinated. The $\text{Al}(\text{SiMe}_3)_3.\text{OEt}_2$ is monomeric (with Al-Si 2.47Å, Al-O 1.95Å), while the tetrakis-compounds form linear chains $\underline{\text{via}}$ contact ion-pair interactions. $\underline{\text{2l5}}$

3.2.3 Compounds containing Al-N or Al-P Bonds

The reduction of Me₃Al.NC₅H₄CH₃ with two equivalents of lithium produces [Me₃AlNC₅H₄CH₃]₂²⁻. N.m.r. data for this are consistent with the formulation ($\overline{74}$), while its visible spectrum suggests that there is significant Al_{dπ}+N_{pπ} bonding. ²¹⁶

The crystal structure of the dimer of $(Me_3P)_3CoN_2AlMe_2$ shows the presence of a four-membered Al_2N_2 ring, (75). The ring is planar,

$$\begin{bmatrix} \text{Me}_{3}\text{Al-N} & \text{N-Alme}_{3} \end{bmatrix}^{2-}$$

$$(74)$$

$$(75)$$

$$(75)$$

and centrosymmetric. 217

Reduction by metallic lithium of $Me_2ClAl.NC_5H_4Me$ forms $(Me_2Al.NC_5H_4Me)_2$, characterised by 1H , 1C and 2Al n.m.r., and electronic spectroscopy. The suggested structure is (76).

Me Me
$$C1_2$$
Me Me_3
Me $C1_2$

 $({\rm Me_3SinMe})_2{\rm SiFNLiCMe_3}$ reacts with aluminium trichloride to give a dimeric silylaminodichloroalane, $[({\rm Me_2SinMe})_2{\rm SiFNCMe_3AlCl_2}]_2$. Hydrolysis of this cleaves the Si-N bonds to produce the fourmembered ring compound $[{\rm Me_3CNHAlCl_2}]_2$. The crystal structure of this shows that the four-membered ${\rm Al_2N_2}$ ring is planar, with a trans-arrangement of nitrogen substituents, $({\overline {77}})$.

 $\{R_2MN[P(C_6H_5)_2]_2\}_2$, where M = Al or Ga; R = Me or Et, can be prepared from R_3M and $[(C_6H_5)_2P]_2NH$, with evolution of alkane. Spectral data shows that in the aluminium compounds the ligand is unsymmetrically P,N-coordinated, to form AlNPAlNP rings. For gallium the analogous form is present, but also a P,P-coordinated isomer with an eight-membered ring is found in solution. Single crystal X-ray diffraction confirmed the P,N-coordination in $\{Me_2Al[P(C_6H_5)_2\}_2]_2$, with the six-membered ring present in the twist conformation.

The first cycloalumadisiladiazane, [ClAl (NMeSiMe $_2$) $_2$] $_2$, has been prepared, from bis(methylamino)tetramethyldisilane and BuLi at -60°C, followed by treatment with AlCl $_3$ in C $_6$ H $_6$ /NMe $_3$ at -80°C.

The structure was shown to be $(\underline{78})$, and n.m.r. and mass spectra show that it persists in the liquid and vapour phases. 221

The analogous disilatriazane system, [ClAl(NMeSiMe₂)₂NMe]₂ has also been reported. I.r. and Raman spectra, and also ¹H, ¹³C, ²⁷Al and ²⁹Si n.m.r. spectra were consistent with the structure (79), which was confirmed by single-crystal X-ray diffraction. ²²² Trimethyl derivatives of Al, Ga or In react with dithio-oxamides, (HNR-CS)₂, where R = H, Me, SiMe₃, CMe₃, in a molar ratio of 2:1, to form 2 moles of CH₄ and the monomeric bis(dimethylmetal)dithio-oxamides, (80). ¹H n.m.r., ir. and Raman spectra show that these exist as two structural isomers, both of which have a planar molecular skeleton of two fused, five-membered rings. They differed in the coordination of the two metal atoms (E- and Z-forms). ²²³

Sodium tetracaprolactamatoaluminate exists primarily as a dimer in benzene solution. Two modes of dimerisation are possible - formation of an eight-membered cyclic caprolactam bridge between two aluminium atoms or the coordination of the caprolactam ligands belonging to two different aluminium atoms to give one sodium atom. ²²⁴

The new amphoteric ligand $({\rm Me_3SiCH_2})_2{\rm AlPPh_2}$ can be prepared from Al(CH₂SiMe₃)₃ or Al(CH₂SiMe₃)₂H and PPh₂H or form Al(CH₂SiMe₃)₂Br

and \mbox{KPPh}_2 . This aluminium phosphide is unique in existing as a monomer/dimer equilibrium in benzene solution. ^225

3.2.4 Compounds containing Al-O, Al-S or Al-Se Bonds

Inert matrices containing aluminium atoms and O_2 or O_3 have been studied. Vibrational spectra were analysed using 16 O/ 18 O isotopic shifts. The results showed that Al and O_2 or O_3 gave unsymmetrical, bent AlOO (of C_8 symmetry) in N_2 matrices, with vOO 1337 cm $^{-1}$, vAl-O 1091 cm $^{-1}$, but that very little of this species was formed in Ar matrices. In both N_2 and Ar matrices, some ozonides were produced (with bands near 850 cm $^{-1}$). There was no evidence for metal-superoxide species, such as are found for Ga, In or Tl and O_2 .

Twelve complexes of O, N or F bases with ${\rm Al}^{3+}$ were investigated by <u>ab initio</u> m.o. calculations at the 6-31G*/3-21G level. The calculated energies of interaction enable the relative binding energies from gas-phase experiments to be placed on an absolute scale, e.g. for ${\rm Al}^{3+}$ ---0, the absolute interaction energy is 32 ± 3 kcal mol⁻¹. 227

A single-crystal X-ray diffraction study has been carried out on $W(\eta^2-HC\equiv COAlCl_3)$ (CO) (PMe₃)Cl, from the $AlCl_3$ -promoted coupling of CO and W(CH) (PMe₃)₄Cl. The Al-O distance was 1.751(3)Å, i.e. there is a significantly stronger Al-O interaction than in other structures containing Al-O (carbonyl; acyl) linkages. ²²⁸

The reactions of $Cr(CO)_5PPh_2K.2(dioxan)$ with $AlR_2Br(R = Br, Me, Et or <math>CH_2SiMe_3$) give high yields of $Cr(CO)_5[PPh_2(CH_2)_4OAlR_2]$. A crystal structure determination was carried out for $R = CH_2SiMe_3$, showing that the molecule is dimeric. Each octahedral $(OC)_5CrPPh_2$ - fragment is linked by an $-(CH_2)_4O$ - unit to two $Al(CH_2SiMe_3)_2$ fragments. The central AlOAlO ring is planar, with $Al-O-Al\ 100.3(6)$, $O-Al-O\ 79.7(5)$, O

2,3,5,6-Tetramethyl-p-benzoquinone and Al_2Cl_6 form two stable coordination complexes, identified by i.r. spectroscopy (in the v(C=0) region) as (81) and (82). The latter gave a band due to the free carbonyl group at 1645 cm⁻¹.230

The crystal structure of Al(NO $_3$) $_3.9D_2$ O has been examined by neutron diffraction. The crystals are monoclinic, space group P2 $_1$ /c, and the asymmetric unit contains octahedral Al(D $_2$ O) $_6$ ³⁺, NO $_3$ - and 3D $_2$ O molecules not coordinated to Al $^{3+}.231$

Fluorosulphuric acid reacts with aluminium tris(trifluoro-acetate) to form aluminium tris(fluorosulphate). Infrared spectra show this to have a polymeric structure, with bidentate bridging fluorosulphates, and six-coordinate aluminium. 232

The composition of volatile hydrolysis products of ${\rm AlCl}_3$ has been studied by mass spectrometry. Thirteen ions of aluminium oxide and hydroxide chlorides were identified. 233

$$\begin{array}{c|c}
C1 & C1 & C1 \\
\downarrow & & & \\
C1 & & & \\
C1 & & & \\
C1 & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
&$$

Crystals of ${\rm Ag_2}\left[{\rm Al_4Cl_{10}O_2}\right]$ are orthorhombic, space group Pbca. They are formed in the AgCl/AlCl₃ system in the presence of traces of water. The structure contains the isolated ions (83). 234

Basic aluminium chloride solutions can be prepared from neutral solutions by addition of alkali or by dissolving metallic aluminium. The solutions prepared by both methods contain monomeric, tridecameric and polymeric cations. The formation of tridecameric cations is favoured by low temperature, low basicity and dilute solutions. Kinetic studies were made on basic aluminium chloride solutions of low basicity using ferrone reagent. The rate constant for the reaction of dimeric ions with ferrone was: $K = 0.97 \, 0.06 \, \text{min}^{-1}.236$ Reaction of activated alumina with aqueous HCl in sealed tubes, above 100°C , gave basic aluminium chlorides. $\chi\text{-Al}_2\text{O}_3$ was the best oxide for this prepara-

tion. 237 1 H n.m.r. studies of the water molecules in basic aluminium chlorides show that three types of water molecule are present: a) fixed coordination species, b) adsorbed 12 O molecules with possible random motion, and c) 12 O molecules with hindered mobility. 238

Interactions of Al(III) (as AlCl₃.6H₂O) with carbonylated head-groups of potassium dodecanoate contained in a bilayer membrane were studied by n.m.r. Under dilute conditions the aluminium binds very strongly to the carboxylate groups, as the Al(OH)₄ ion. Partial replacement of K⁺ by NMe₂R⁺ disrupts this binding.²³⁹

Redox, hydrolysis and complexation equilibria were studied in the system ${\rm Al}^{3+}$ -1,2-naphthaquinone-4-sulphonate/1,2-dihydroxy-naphthane-4-sulphonate-OH⁻. ^{24O} Equilibria between Al(III), salicylic acid and OH were studied at 25°C by potentiometry. Equilibrium constants were determined for ${\rm AlL}^+$, ${\rm AlL}_2^-$, ${\rm Al}({\rm OH}){\rm L}_2^{2-}$ and ${\rm Al}_2({\rm OH})_2{\rm L}_2^{3-}$ (where ${\rm H}_2{\rm L}$ = salicylic acid). ²⁴¹ Similar data were determined for ${\rm Al}^{3+}$ - ${\rm H}_3{\rm L}$ - OH (H₃L- citric acid). Evidence was found for the mononuclear [Al(HL)]⁺, AlL, AlL $_2^{3-}$, as well as a very stable trinuclear complex [Al $_3({\rm OH})_4{\rm L}_3^{3-}$.

²⁷Al n.m.r. was used (for 10 mM aqueous solutions) to study interactions of Al(III) with citrate, lactate and EDTA. For lactate, slow exchange phenomena make possible the observation of separate peaks for Al(H₂O)₆³⁺, 1:1 and 1:3 Al-lactate complexes, as well as mixed aquo-lactato and hydroxy-lactato complexes. ²⁴³Complex formation between Al³⁺ and imidazolidine-2-one was also investigated by ²⁷Al n.m.r. Evidence was found for several species with different stoichiometries. ²⁴⁴

The kinetics of replacement of semithymol Blue ($\rm H_4L$) by EDTA in AlL were studied spectrophotometrically. Two parallel paths (associative and dissociative) were found for the replacement. ^245 Equilibrium constants were obtained for Al(III) complexes with methylthymol blue, semimethylthymol blue, xylenol orange and semixylenol orange. ^246

The preparation of hydrated ${\rm Al}_2{\rm O}_3$ from an alkaline solution by carboxylic acid amides has been studied. Al(OH)₃ was formed when the solution is slightly supersaturated, as a homogeneous, crystalline precipitate.²⁴⁷

The temperature dependence of phase formation has been studied in the systems $Al_2O_3 - M_2O_3$ (where M = In, V or Ti). ²⁴⁸ Quadrupolar coupling constants and asymmetry parameters were

determined from the ^{27}Al n.m.r. spectra of single β -alumina crystals. The temperature dependence of the spectra gave useful structural information. 249

Solid-phase $^{27}{\rm Al~n.m.r.}$, with "magic-angle spinning", was used to probe the environments of aluminium atoms in non-crystalline solids, ${\rm Al_2O_3}$ -SiO₂ gels, soda glass and mullite precursors. It was possible to obtain quantitative estimates of tetrahedral and octahedral coordination proportions for the aluminium atoms. 250

 $^{27}\mathrm{Al}$ n.m.r. and the contribution of $\mathrm{Al}_2\mathrm{O}_3$ to molar refractivities show that the aluminium is octahedrally coordinated in $\alpha\text{-LiAlO}_2$, but tetrahedrally coordinated in $\gamma\text{-LiAlO}_2$. In $\beta\text{-LiAlO}_2$, contrary to earlier suggestions, only tetrahedral aluminium is present. A similar result was reported from a $^{27}\mathrm{Al}$ n.m.r. study, using magic-angle spinning, of polycrystalline LiAlO $_2$ polymorphs. The symmetry of the aluminium sites was characterised by quadrupole coupling data. 252

Lithium hydroxocarbonatoaluminate was synthesised by treating $\text{Li}_2\text{O}.2\text{Al}_2\text{O}_3.\text{nH}_2\text{O}$ (where n = 7-11) with CO_2 . The product is believed to have a layer structure, based on bayerite, with monoclinic symmetry. 253

High-resolution 27 Al n.m.r. of crystalline aluminium phosphates show that for a wide range of compounds the aluminium is exclusively octahedrally coordinated. I.r., X-ray and thermal analysis data were reported for the crystalline tripolyphosphate, Na₂Al P₃O₁₀. 4H 2O. 255

A study of the high-resolution solid-state 29 Si and 27 Al n.m.r. spectra has been made for the product of treating synthetic zeolite Na-Y with SiCl₄ vapour at 560°C. The 27 Al n.m.r. spectrum of the dry material showed two peaks, one due to residual lattice aluminium, and one due to AlCl₄. The washed, dealuminated zeolite Y gives 27 Al resonances due to tetrahedral aluminium in the lattice, and octahedral aluminium as cations in the zeolitic channels. Neutron diffraction on zeolites sodium ZK-4 (Si/Al = 1.65) and sodium Y (Si/Al = 2.61) shows that there is no long-range Si-Al ordering, unlike sodium A and X zeolites. 257

Time-of-flight neutron diffraction data on NdAlO $_3$ show that NdAlO $_3$ crystals are rhombohedral, space group $R\overline{3}c.^{258}$

 ${
m Na_2^{~O}}$ and ${
m Al_2^{~O}}_3$ react in a closed nickel cylinder at 980K to form colourless single crystals of ${
m Na_{14}~Al_4^{~O}}_1$, which are very moisture sensitive. They crystallise in the monoclinic space

group P2 $_1$ /c. The Al $_4$ O $_{13}$ $^{14-}$ anion is built up of four AlO $_4$ tetrahedra sharing vertices. Basic sodalite, Na $_8$ Al $_6$ Si $_6$ O $_2$ 4 $^{(OH)}_2$.2H $_2$ O forms cubic crystals, space group P $\overline{4}$ 3n. The 1:1 alumino-silicate framework is completely ordered. 26O

The structure and ionic distribution in the conducting plane of ammonium-hydronium $\beta"-alumina$, a solid electrolyte, were determined by single crystal neutron diffraction. The composition is $(\mathrm{NH_4}^+)_{1.56}(\mathrm{H_3O}^+)_{0.19}\mathrm{Mg_{0.75}^{Al}}_{10.25}\mathrm{^{O}_{17}}(\mathrm{H_2O})_{0.25}$. The structure comprises spinel blocks of aluminium atoms, either tetrahedrally or octahedrally coordinated to oxygen atoms. One of the two tetrahedrally coordinated Al $^{3+}$ sites is 37% occupied by Mg^{2+} to provide charge compensation in the structure. 261

Differential calorimetric analysis, $^1{\rm H}$ n.m.r. spin-lattice relaxation measurements and X-ray powder diffraction data show that hydration of CaO.Al $_2{\rm O}_3$ in the temperature range 4-83 $^{\rm O}{\rm C}$ proceeds in three distinct steps. 262

Reaction of aqueous solutions of $AlCl_3$ and sodium germanate, with subsequent precipitation as the sulphate, gives $\left[\text{GeO}_4\text{Al}_{12}\left(\text{OH}\right)_{24}\left(\text{H}_2\text{O}\right)_{12}\right]\left(\text{SO}_4\right)_4\cdot\text{xH}_2\text{O}$. This was characterised by chemical analysis and $^7\text{Al n.m.r.}$ The new species was shown to have higher stability than the tridecameric basic aluminium cation. 263

Solubility, and the composition of solid phases, were studied in the system Al(NO₃)₃ - Al₂(SO₄)₃ - H₂O at 25°C. Phase relationships were established for the systems: Al³⁺,Ga³⁺ + H⁺|| SO₄²⁻ - H₂O; Ga³⁺ + H⁺,In³⁺|| SO₄²⁻ - H₂O, and Al³⁺,In³⁺|| SO₄²⁻ - H₂O at 25°C.

Al $_2$ V $_{10}$ O $_{28}$.22H $_2$ O forms orthorhombic crystals, space group Acmm. Thermal decomposition yields 2:1 mixtures of V $_2$ O $_5$ and AlVO $_4$. 266 The temperature of peritectic fusion of AlVO $_4$ depends upon the partial pressure of oxygen in the synthesis of the specimens. 267 Phase compositions and equilibria were studied in the system AlVO $_4$ - CrVO $_4$ - FeVO $_4$ - NaVO $_3$. A continuous complex solid solution was formed, involving NaFeV $_2$ O $_7$, NaCrV $_2$ O $_7$ and NaAlV $_2$ O $_7$. Phase diagrams were elucidated for the systems: Al $_2$ O $_3$ - SiO $_2$ - V $_2$ O $_5$, Al $_2$ O $_3$ - K $_2$ O - V $_2$ O $_5$, Al $_2$ O $_3$ - K $_2$ O - SiO $_2$ - V $_2$ O $_5$; Al $_2$ O $_3$ - SiO $_2$ - Na $_2$ O - V $_2$ O $_5$ and Al $_2$ O $_3$ - SiO $_2$ - Na $_2$ O - V $_2$ O $_5$ and Al $_2$ O $_3$ - SiO $_2$ - Na $_2$ O - V $_2$ O $_5$ and Al $_2$ O $_3$ - SiO $_2$ - Na $_2$ O - V $_2$ O $_5$ - A study of phase composition and equilibrium in the system FeVO $_4$ - CrVO $_4$ - AlVO $_4$ - KVO $_3$ shows that several new pyrovanadates are formed, including KAlV $_2$ O $_7$.

AlTaO $_4$ single crystals can be prepared from Al $_2$ O $_3$ and Ta $_2$ O $_5$ at 1800°C. X-ray diffraction shows that the crystals have tetragonal symmetry (space group D $_2$ h-P $_4$ /mnm). The structure is of rutiletype, with a statistical distribution of Al and Ta. 272

The vibrational spectra of MAl(MoO₄)₂, where M = K, Rb or Cs, have been studied, and some assignments proposed. Phase equilibria have been determined in the systems $\text{Bi}_2(\text{MoO}_4)_3$ - $\text{M}_2(\text{MoO}_4)_3$, where M = Al or In. 274

The spinel ZnAl₂S₄ has been studied by X-ray diffraction. The lattice constant was 1000.9(1) pm, and the results were explicable in terms of the space group Fd3m. The cation distribution corresponded to the normal spinel structure.²⁷⁵

Al(NR₂)₃ and Clal(NR₂)₂, where R = Me, insert CS₂ to form the dimethyldithiocarbamates Al(S₂CNR₂)₃ and Clal(S₂CNR₂)₂ respectively. The former is monomeric; ²⁷Al n.m.r. suggests six-coordinate aluminium, which is confirmed by X-ray diffraction (the geometry at the aluminium is distorted octahedral). The latter is dimeric, with two bridging chlorine atoms, and six-coordination at each aluminium. ²⁷⁶

The quasibinary systems $\mathrm{Zn_{1-x}Cd_x^{Al_2S_4}}$, $\mathrm{ZnAl_2(1-x)}^{Ga_2xS_4}$, and $\mathrm{ZnAl_2S_4(1-x)}^{Se_4x}$ were investigated by X-ray diffraction and vibrational spectroscopy. In the spinel $\mathrm{ZnAl_2S_4}$, up to 20% of the zinc can be replaced by Cd. In the other systems $\mathrm{ZnAl_2S_4}$ has no measurable homogeneity range. Thiogallate phases have much broader homogeneity ranges. At 950°C, $\mathrm{ZnAl_2Se_4}$ undergoes a reversible phase transition to a wurtzite-type structure.

3.2.5 Aluminium Halides

Stability constants have been measured for aluminium fluoro complexes in the system Al(NO $_3$) $_3$ - NH $_4$ F - NH $_4$ NO $_3$ - H $_2$ O at 25 $^{\rm O}$ C; K $_{\rm AlF}$ 2+ 2.90 x 10 6 ; K $_{\rm AlF}$ $_2$ + 2.76 x 10 11 ; K $_{\rm AlF}$ $_3$ 1.46 x 10 15 ; K $_{\rm AlF}$ $_4$ - 6.76 x 10 17 ; K $_{\rm AlF}$ $_5$ - 1.97 x 10 19 ; K $_{\rm AlF}$ $_6$ - 2.88 x 10 28 .278

Standard extended Hückel techniques, with automatic optimisation, were used to study the structures and energetics of AlX $_3$ and Al $_2$ X $_6$ molecules, where X = F, Cl, Br or I. Marked nonrigidity was found for the AlXALX ring in Al $_2$ X $_6$.

The interaction of BeF $_2$ and AlF $_3$, at temperatures 400-800 $^{\circ}$ C and AlF $_3$ concentrations of 0-75%, was investigated to give preliminary results on the AlF $_3$ -BeF $_2$ phase diagram. ²⁸⁰

The solubilities of $CaCl_2$ and cryolite in aqueous solutions were studied at $60^{\circ}C$ and $80^{\circ}C$. The mixed fluoroaluminate $CaNaAlF_6$ was identified. 281 $[C(NH_2)_3]_3MF_6$, where M=Al, Ga or In, were isolated from aqueous solutions of the corresponding fluorides. The compounds are isostructural, space group $Pa3.^{282}$ Some phase relationships were elucidated for the system 3Li, $3Na || AlF_6$, 3Cl, $3F.^{283}$

$$(Me_3C)_2Si \xrightarrow{F}_{N} A1 \xrightarrow{N}_{C1} Si(CMe_3)_2$$

$$Me_3C \qquad (84)$$

Silicenium ylides can be stabilised by coordination with aluminium trihalides. A crystal structure determination was carried out for $[(Me_3C)_2SiNCMe_3]_2AlClF_2$, $(\underline{84})$.

The nature of ionic species formed by dissolving $AlCl_3$ or $Al(ClO_4)_3$ in anhydrous methanol was studied by 1H , ^{27}Al and ^{35}Cl n.m.r. For $AlCl_3$, the chief species is $[AlCl_2(MeOH)_4]^+$, with no evidence for monochloro-species. $Al(ClO_4)_3$ solutions give very broad ^{27}Al resonances, probably due to interaction between the anions and hexasolvated Al(III) cations. Addition of H_2O to the $AlCl_3$ solutions leads to the formation of mono- and di-aquodichloro complexes, followed by chloride-free species, with both MeOH and H_2O in the coordination sphere. 285

I.r. spectra have been obtained for aluminium chloride vapour $(\mathrm{Al}_2\mathrm{Cl}_6$, $\mathrm{AlCl}_3)$, including data on $\mathrm{Al}_2^{35}\mathrm{Cl}_6$ and $\mathrm{Al}_2^{37}\mathrm{Cl}_6$, in the ranges 473-873K and 700-50 cm⁻¹, as well as Raman spectra of $\mathrm{Al}_2\mathrm{Cl}_6$ vapour (ca. 500K) and AlCl_3 vapour (ca. 1075K), at pressures of 0.3 to 10 atm., including polarisation measurements, and spectra of the $^{35}\mathrm{Cl}$ and $^{37}\mathrm{Cl}$ compounds. Detailed vibrational assignments were therefore possible. The dimer spectra were interpreted in terms of D_{2h} symmetry - all 9 Raman-active and 7 of the infraredactive fundamentals were assigned. All four fundamentals for a D_{3h} monomer were also assigned. Force fields were calculated for both monomer and dimer. 286

²⁷Al n.m.r. line-widths and ¹³C n.m.r. chemical shifts have been studied in mixtures of l-methyl-3-ethylimidazolium chloride and aluminium chloride at room temperature. The ¹³C shifts were

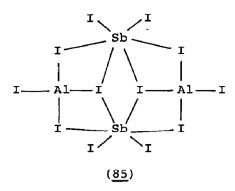
explicable by anion-cation interactions, and the $^{27}\mathrm{Al}$ line widths by the presence of more than one type of chloroaluminate ion. Temperature-dependent $^{27}\mathrm{Al}$ n.m.r. spectra show that chemical exchange takes place between chloroaluminate anions in aluminium chloride-rich molten salts. 287

[Al($C_4H_8O_2$)Cl₃]. $C_4H_8O_2$ forms monoclinic crystals, space group $P2_1/m$. The structure contains distorted trigonal planar AlCl₃ units bridged by dioxan chairs to form chains parallel to the <u>b</u>-axis. The chains are separated by layers of dioxan molecules. The geometry around the five-coordinate aluminium is approximately trigonal-bipyramidal, with some distortion of the equatorial chlorine atoms (angles $115^{\circ}-123^{\circ}$). ²⁸⁸

High-resolution 1 H and 13 C n.m.r. spectra have been obtained for the n-butylpyridinium cation (BP $^+$) in (BP)Cl-AlCl $_3$ melts. The chemical shifts and proton coupling constants are affected by BP $^+$ -AlCl $_4$ association. The 7 Li n.m.r. spectra of (BP)Cl-AlCl $_3$ -LiCl gave evidence for the formation of Li $^+$ Al $_2$ Cl $_7$ - 2 89

Component interaction was detected in the CuCl-AlCl $_3$ system. The compound Cu(AlCl $_4$) $_2$ was formed, which melts incongruently at $^{212}{}^{\circ}{\rm C.}^{290}$

Complexes YbCl $_3^-$ (AlCl $_3$) $_n$ have been investigated in the gas phase radiochemically, using tracer 169 Yb. $^{\Delta H}_{298}$ and $^{\Delta S}_{298}$ values were estimated for YbAlCl $_6$, YbAl $_2$ Cl $_9$, YbAl $_3$ Cl $_{12}$ and YbAl $_4$ Cl $_{15}$, from measurements of the equilibrium constants for (11), in the range


$$YbCl_{3(s)} + n Al_{2}Cl_{6(g)} \rightleftharpoons YbAl_{2n}Cl_{6n+3(g)}$$
 ...(11)

500-1000K, 291

The nuclear spins of $^{27}\mathrm{Al}$, $^{69}\mathrm{Ga}$ or $^{71}\mathrm{Ga}$ in $[\mathrm{MCl}_{4-n}\mathrm{Br}_n]^-$ and $[\mathrm{M(MeCN)}_6]^{3+}$, where M = Al or Ga, relax by means of the second-kind scalar and quadrupole relaxation mechanisms. No exchange processes were found for these ions on the n.m.r. time-scale. 292

 $PI_4^+AlI_4^-$ is produced from PI_3 , I_2 and AlI_3 in CS_2 solution. It forms orthorhombic crystals, space group Pna2. The anion is approximately tetrahedral, with an Al-I distance of 251.8 pm. Weak I...I bonds (338.6-345.1 pm) link the anions and cations to form a three-dimensional array. $P_2I_5^+AlI_4^-$ crystals are orthorhombic (space group Pbca), with a mean Al-I bond length of 252.9 pm. $P_2I_5^-$

 ${\rm Al_2Sb_2I_{12}}$ is prepared by heating stoichiometric amounts of ${\rm AlI_3}$

and ${\rm SbI}_3$ in ${\rm CS}_2$. It forms monoclinic crystals, space group ${\rm C2/m}$. The ${\rm Al}_2{\rm Sb}_2{\rm I}_{12}$ units are formed by two Sb-I octahedra sharing four common edges with two ${\rm AlI}_4$ tetrahedra, $(\underline{85})$.

3.2.6 Other Aluminium-containing Species

The electronic absorption spectra have been reported for Al $_2$, Ga $_2$ and In $_2$. The ground state of Al $_2$ was re-assigned as $^1\Sigma_g^+$, not $^3\Sigma_g^-$.

The phase diagram has been established for the Ti-Ni-Al-C system at 1100°C. The H-phase Ti₂AlC and the perovskite phase Ti₃AlC are destabilised by even small amounts of Ni. 297

Aluminium dissolves in LaNi $_5$ to form LaNi $_{5-x}$ Al $_x$ (for x up to 1.5). Hydride phases based on these have been synthesised and characterised. They are more stable than those based on LaNi $_5$ itself. 298

EXAFS spectra obtained for solid and for flash-melted aluminium films with a single nanosecond pulse of X-rays from a laser-produced plasma. These spectra gave a direct observation of a degree of local order in rapidly-melting aluminium. 299

3.3 GALLIUM

3.3.1 Compounds containing Ga-C Bonds

The product from the reaction of $Ga(CH_2SiMe_3)_3$ and KH in benzene at $45^{\circ}C$ was identified as $KGa(CH_2SiMe_3)_3H$ (by X-ray diffraction, i.r., 1H n.m.r. spectroscopy, and by its reactions). The compound does not decompose thermally below $200^{\circ}C$. X-ray diffraction shows that the crystals are monoclinic (space group $P2_1/c$). The geometry at gallium was distorted tetrahedral. The infrared spectra of $KGa(CH_2SiMe_3)_3H$, and its Ga-D analogue, showed vGa-D at 1075 cm $^{-1}$, and hence vGa-H ca. 1500 cm $^{-1}$ - an

unusually low value. In $(CH_2SiMe_3)_3$ and KH gave K $[In(CH_2SiMe_3)_3H]$ and K $[In(CH_2SiMe_3)_4]$. The tetrakis-compound formed monoclinic crystals $(P2_1/c)$, with In-C distances in the range 2.234(4)-2.251(4) A. 300

Chlorogallium(III) porphyrins react with organolithium or Grignard reagents to form new porphyrin species containing a σ -Ga-C bond. ³⁰¹

3.3.2 Compounds containing Ga-N or Ga-P Bonds

Ph₂GaX.L (L = py or PPh₃) and $[(Ph_3P)_2N]^+Ph_2GaX_2^-$ (X = Cl or Br) can be prepared from Ph₂GaX. Their vibrational spectra were reported and assigned, e.g. vGaN in the pyridine adduct is at 262 (X = Cl), 248 (X = Br) cm⁻¹; vGaP in the PPh₃ adduct at 310 (X = Cl), 304 (X = Br) cm⁻¹.

A crystal structure determination has been carried out on the gallium(III) complex of the hexadentate ligand ethylenebis[(o-hydroxyphenyl)glycine], EHPG, i.e. Ga(EHPG)²⁻. This complex is a model for the metal-binding site of the human iron-transport protein transferrin. The crystals (monoclinic, space group C2/c) only contain the racemic isomer of EHPG. The gallium is bound to two N atoms, two phenolate O atoms and two carboxylate O atoms. 303

3.3.3 Compounds Containing Bonds Between Gallium and Group 6 Elements

The alkali metal gallates and indates MM'O₂, where M = Li, Na, K, Rb, Cs; M' = Ga; M = Li or Na; M' = In, can be prepared from the corresponding oxides. Infrared and Raman spectra, with some vibrational assignments, were reported. 3O4

 ${
m K_2Li_3GaO_4}$ is prepared from the binary oxides (as a powder) or from ${
m LiGaO_2/KO_{O.48}}$ (as single crystals). The crystals are monoclinic, space group ${
m P2_1/c}$, while the structure is complex, with all of the gallium atoms four-coordinate (mean Ga-O distance 183 pm). The interaction of lithium molybdate and gallium(III) sulphate produces ${
m Li_3Ga(MoO_4)_3}$ and ${
m LiGa(MoO_4)_2}$, as well as ${
m Li_2SO_4}$. CaAGaEO₇, where A = Ti, Zr, Hf or Sn; E = Sb, Nb or Ta, all have the zirconolite structure.

12-Tungstogallic acid, H_5 [GaW₁₂O₄₀].13H₂O, and its alkaline-earth metal salts were prepared by ion-exchange from the sodium salt. The compounds were characterised by X-ray powder diffraction, thermogravimetry, i.r. and 1 H n.m.r. spectra, etc.

Infrared and Raman spectra have been reported for the calcium gallium oxides CaGa₄O₇, CaGa₂O₄, Ca₃Ga₄O₉ and Ca₃Ga₂O₆. All except the third have gallium only in the tetrahedral coordination state, while the first two have non-centrosymmetric, the last two centrosymmetric structures.

An X-ray diffraction study has been made of the ${\rm MO_2-ANbO_4}$ systems, where M = Ti, Zr, Hf or Sn; A = Al or Ga. Evidence was found for the new (orthorhombic) compounds ${\rm MO_2.4GaNbO_4}$ (where M = Ti, Zr, Hf or Sn). Single-crystal X-ray diffraction was used to refine the structural parameters for gadolinium gallium garnet, ${\rm Gd_3Ga_5O_{12}}$. Pb $_3{\rm GeGa_{10}O_{20}}$ is isostructural with Pb $_3{\rm GeAl_{10}O_{20}}$. The structure consists of a framework of six-membered rings of ${\rm GaO_4}$ tetrahedra, forming a ribbed plane. These planes are connected by a string of octahedra. ${\rm ^{312}}$

 ${
m GaLa_3^{OS}}_5$ forms orthorhombic crystals, space group Pnma. The gallium is four-coordinated (by S atoms), with Ga-S distances between 2.215(2) and 2.335(1) ${
m A.}^{313}$

 GaX_3 (where X = Cl, Br or I) and the silyl sulphides Me_3SiSR (where R = Me, Et or Ph) react to give the extremely moisturesensitive $X_2Ga(SR)$, where X = Cl, Br, I; R = Me, Et, Ph, ClGa(SR)₂, where R = Me, Et, Ph, Br₃Ga₂(SR)₃, where R = Me or Et, and $Ga(SR)_3$, where R = Me, Et or Ph. All were characterised by infrared and 1H n.m.r. spectroscopy. 314

Equilibrium diagrams have been established for the systems ${\rm Ga_2S_3^{-PbS}}$ and ${\rm Ga_2S_3^{-Pb}}$. Regions of glass formation have been identified in the systems ${\rm As_2X_3^{-}GaX}$ (X = S, Se or Te) and related to the equilibrium diagrams in each case. 316

Crystals of $\text{Ga}_2\text{Sn}_2\text{S}_5$ are orthorhombic (space group Pna2_1), containing four-coordinate gallium atoms. The structure is built up from alternating sheets of $[\text{GaS}_4]_n$ and $[\text{Sn}_2\text{S}_{11}]_n$ units. The GaS_4 tetrahedra are linked in pairs, sharing opposite edges. Ba $_4\text{Ga}_4\text{S}_{10}$ (monoclinic crystals, space group C2/c) contain isolated Ga_4S_{10} anions, having the adamantane structure. 318

The ordered phase of Ga_2Se_3 is monoclinic (space group Bb), with a superstructure of the basic distorted sphalerite-type. The studies of $CuGaX_2$ (X = Se or Te) at high pressure show that there is a transition from the chalcopyrite to the NaCl structure type at 12.5 GPa (X = Se) or 8 GPa (Te).

The new compound $SrGa_2Se_4$ can be prepared from $SrGa_2$ and Se. It forms orthorhombic crystals (space group Cccm), and the structure

is a new variant of the TISe structure-type. ³²¹ Cs₆Ga₂Se₆ is produced from Cs₂Ga/Ga₂Se₃ mixtures. The crystals are monoclinic (space group P2₁/c), and isolated Ga₂Se₆ ions are present, with tetrahedral gallium, and two bridging Se atoms. The GaSe₆ distances are 238 and 240 pm, the Ga-Se_{br} distances 247 and 250 pm. ³²² GaGeTe crystallises from a melt of the elements. It is a semiconductor, with a novel structural type containing two-dimensional infinite block layers: ²[Te-Ga-Ge-Ge-Ga-Te], derived from GaSe.

conductor, with a novel structural type containing two-dimensional infinite block layers: ${}^2_\infty$ [Te-Ga-Ge-Ge-Ga-Te], derived from GaSe. The gallium atoms are bonded to 3 tellurium atoms (2.656(3)Å) and one germanium atom (2.440(3)Å). 323

3.3.4 Gallium Halides

Effective ionic radii have been calculated for the cubic pyrochlores $\text{CsM}^{\text{II}}\text{GaF}_6$, where $\text{M}^{\text{II}}=\text{Mg}$, Ni, Cu, Zn, Co or Mn. ³²⁴ Chemical equilibria were studied in the HCl-GaP system in the temperature range 800-1100K. Evidence was found for GaCl, GaCl₂, GaCl₃, HCl, H₂, P₄ and P₂ in the gas phase. ³²⁵

The reaction of gallium and sulphur in chloride melts at ca. 500° C was followed by Raman spectroscopy. The results were consistent with the formation of long-chain chlorosulphides, $(-GaCl_2-S-GaCl_2-S-)$, as well as $GaCl_4$ and Ga_2Cl_7 .

It is possible to crystallise a phase $(C_6H_6)_{3.5}Ga_2Cl_4$ from Ga_2Cl_4 solutions in anhydrous benzene. The crystal structure shows that it is made up of cyclic, centrosymmetric $[(C_6H_6)_2Ga^IGa^{III}Cl_4]_2$ units, and isolated benzene molecules. In the bis(benzene)gallium(I) fragment, the two η^6 -benzene rings form an interplanar angle of $124.4^{\circ}.327$

The formation of gaseous complexes between NdCl $_3$ and GaCl $_3$ was studied by visible absorption spectroscopy in the temperature range 600-1000K, at pressures from 5 to 20 atmospheres. Model thermodynamic calculations suggest that there is a stepwise build up of gaseous complexes: NdGaCl $_6$, NdGa $_2$ Cl $_9$, NdGa $_3$ Cl $_{12}$ and NdGd $_4$ Cl $_{15}$.

 GaI_2 -MGaI₄ (where M = Na, K, Rb or Cs) systems have been studied by thermal analysis. GaI_2 forms continuous solid solutions in the systems with M = Na, K or Rb; with Cs 1:1 and (possibly) 1:3 compounds are formed with CsGaI₄. 329

3.3.5 Other Gallium-containing Species

Raman spectra have been obtained for Ga2, In2 and Tl2 molecules

in argon and krypton matrices. Resonance progressions gave the following vibrational wavenumbers and anharmonicities: $Ga_2:\omega_e"=180~\text{cm}^{-1}$, $\omega_e x_e"=1~\text{cm}^{-1}$; $In_2:118~\text{cm}^{-1}$, $0.8~\text{cm}^{-1}$; $Tl_2:80~\text{cm}^{-1}$, $0.5~\text{cm}^{-1}$. The dissociation energies of In_2 and Tl_2 were recalculated as 20 kcal.mol⁻¹, 10 kcal.mol⁻¹ respectively (±10%).

Crystal structure determinations have been carried out for $^{\rm Ba}_8{^{\rm Ga}_7}$, $^{\rm Sr}_8{^{\rm Ga}_7}$ and $^{\rm Sr}_8{^{\rm Al}_7}$. All are cubic, space group $^{\rm P2}_{13}$. The structure is characterised by the presence of isolated tetrahedral and triangular clusters of Ga (or Al) atoms inside cages of alkaline-earth atoms. 331

3.4 INDIUM

3.4.1 Compounds containing In-N, In-P or In-Sb Bonds

Crystals of $\text{Cl}_2\text{In}(\text{O}_2\text{CPh})\,\text{py}_2$ are orthorhombic, space group Pna2_1 ; the structure is $(\underline{86})$, with In-Cl, 2.39Å; In-O, 2.25-2.28Å; In-N 2.25-2.30Å. It was suggested that the indium-benzoate bonding involves a three-centre m.o., $\text{In-}\bigcirc_0^0$ (formally occupying only one coordination site, rather than the conventional form $\text{In-}\bigcirc_0^0$, occupying two sites. 332

$$\begin{array}{c|c}
\hline
O\\
N\\
\hline
C1\\
\hline
In\\
O\\
\hline
O\\
\hline
O\\
\hline
(86)
\end{array}$$

$$\begin{array}{c}
C-Ph\\
O\\
\hline
O\\
\end{array}$$

A single-crystal X-ray diffraction study of indium(III) dithizonate shows that the crystals are triclinic, space group $P\overline{1}$, and that the asymmetric unit is a monomeric In(Hdz)₃ molecule. The indium is five-coordinate (trigonal bipyramidal), with one ligand unidentate and equatorial (via S: In-S = 2.468(3)Å) and the other two bidentate (via N and S), spanning axial and equatorial positions: axial In-N, 2.372(6), 2.334(6)Å, equatorial In-S, 2.477(3), 2.467(3)Å.

The InSb-Tl system was found to be quasibinary, and the solubility of thallium in InSb was studied. 334

3.4.2 Compounds containing In-O, In-S or In-Te Bonds

A theoretical vibrational analysis has been proposed for ${\tt LaInO_3}$.

NH₄[In(C₂O₄)₂].2H₂O forms hexagonal crystals, space group P6₂22. The indium is eight-coordinated by oxygen atoms from four oxalato groups (which are bridging), forming a distorted Archimedean antiprism. There are four In-O bonds at 2.197(4)Å, and four at 2.351(5)Å. The neutral complex [In₂(C₂O₄)₃(H₂O)₄].2H₂O forms monoclinic crystals (space group P2₁/c), and the indium is seven-coordinated by oxygens, as a pentagonal bipyramid. These are linked by bridging oxalate groups, forming infinite chains along the [OO1] direction. The average In-O bond distances are 2.234(16)Å to oxalate, 2.157(2)Å to H₂O molecules. 337

Phase equilibria have been studied in the BaO-In $_2$ O $_3$ system. The following compounds were found: Ba $_5$ In $_2$ O $_8$, Ba $_3$ In $_2$ O $_6$, Ba $_2$ In $_2$ O $_5$, α -Ba $_4$ In $_6$ O $_1$ 3, β -Ba $_4$ In $_6$ O $_1$ 3 and BaIn $_2$ O $_4$. Lattice parameters, infrared and Raman spectra were obtained for these, and the equilibrium diagram of the BaO-In $_2$ O $_3$ system constructed. 338

It was found that the systems $LiIn(MoO_4)_2$ -MIn $(MoO_4)_2$ (where M = K or Rb) are eutectic, with regions of liquid immiscibility. No ternary compounds are formed. Sometimes are formation was studied in the In(III)-molybdate system. Heteropoly complexes of the 6-, 9- and 12-series were all formed. Sometimes 340

Knudsen cell mass spectrometry was used to study the equilibrium vaporisation of CuInS_2 (s) in the temperature range 902-1110K. Evidence was found for the reaction (12), and ΔH^0_{298} for this

$$2CuInS2(s) \rightarrow Cu2S(s) + In2S(g) + S2(g) ...(12)$$

reaction was found to be 630.9±26 kJ mol⁻¹. The enthalpy of formation of CuInS₂ was calculated to be, $\Delta H^{O}_{298,s} = -221.7\pm13$ kJ. mol⁻¹.341

 ${\rm In_5}^{\rm KS}{}_8$ forms monoclinic crystals, space group B2/m. Both four-and six-coordinate indium atoms are present, with In-S distances in the range 2.428-2.749Å. $^{342}{}^{\rm Pb}{}_{1.6}{}^{\rm In}{}_8{}^{\rm Bi}{}_4{}^{\rm S}{}_{19}$ also forms monoclinic crystals (space group C2/m). Distorted In-S octahedra are present, with bond distances 2.572(6)-2.733(4)Å. 343

Electrical conductivity, microhardness and lattice parameters were measured in the solid solutions $(In_2Te_3)_x(Hg_3Te_3)_{1-x}$ (for $0 \le x \le 0.1$) at 300K. 344

3.4.3 Indium Halides

The mechanism of reaction of solid InCl with aqueous nitrate solutions has been investigated. A complex series of processes appears to take place. The effects of adding Cl and In(III) on the reaction of solid InCl with aqueous nitrate solutions were also observed. There was some evidence for heterogeneous disproportionation of the InCl. 346

The quaternary compounds AIn_2X_3Y , where A = Cu or Ag; X = S, Se or Te; Y = Cl, Br or I, can be synthesised at high temperature and pressure. The structures are either of the defect zinc blende or defect NaCl types. 347

The phase diagram of the In/Cl system has been redetermined in the range 30-50 mole % In. The only mixed valence chlorides detected are ${\rm In_3Cl_4}$, ${\rm In_2Cl_3}$ and ${\rm In_5Cl_9}$. The last compound crystallises with the ${\rm Cs_3Tl_2Cl_9}$ -type of structure, i.e. it contains isolated ${\rm In_2^{III}Cl_9}^3$ anions. 348

81Br n.q.r. tensors have been determined for (NH₄)₂InBr₅.H₂O. 349

3.5 THALLIUM

3.5.1 Thallium(I) Compounds

N.m.r. spectra have been obtained for ${\rm Tl}^+$ in molten binary mixtures of salts. Shifts of ${\rm ^{205}Tl}^+$ increase in the paramagnetic direction with increased temperature and in the diamagnetic direction with decreased size of added foreign cations. ${\rm ^{350}}$

 ${\rm Tl}^{\rm I}[{\rm C}_5{\rm H}_4{\rm PPh}_2]$ can be prepared from CpPPh $_2$ and Tl(OEt). It is a useful reagent in the synthesis of heterobimetallic Tl-Mn complexes. 351

 1 H n.m.r. data show that at pH values from 7 to 14, T1(I) is coordinated to β-alanine predominantly <u>via</u> 0, to aspartic acid <u>via</u> 0 and N, although S may participate in coordination. T1(I) coordinates glycine <u>via</u> N and O, while T1(III) always coordinates amino-acids via N and O. 352

 ${\rm Tl}\left({\rm C_4H_8O_2}\right)^+{\rm TlBr_4}^-$ forms orthorhombic crystals, space group ${\rm Cmc2}_1$. The ${\rm TlBr_4}^-$ anions are tetrahedral, while the ${\rm Tl}^+$ cations exist in chains, bridged by 1,4-dioxan molecules. The geometry around the eight-coordinate ${\rm Tl}^+$ is a distorted dodecahedron. 353

 $^{205}{
m Tl}$ and $^{13}{
m C}$ n.m.r. spectra show that ${
m Tl}^+$ and gramicidin A bind to form a 1:1 complex, with the ligand binding site identified as a carbonyl group. 354

The cationic conductivity has been measured for thallium hexaniobate, ${\rm Tl_2O.6Nb_2O_5}$. The Raman spectra of ${\rm Tl_2CO_3}$ have been studied at pressures up to ca. 52 kbar, and the infrared spectra to ca. 36 kbar. Phase transitions were detected from the Raman spectra at 13 and 38 kbar. 356

No fewer than 45 new thallium(I) carboxylates have been synthesised, analysed, and their νCO_2 vibrational wavenumbers assigned. ³⁵⁷ Infrared and Raman spectra of thallium(I) formate, acetate, propionate and acrylate were recorded and assigned. The Tl(I)-carboxylate bond was fractionally completely ionic. ³⁵⁸

The temperature dependences of ²⁰⁵Tl n.m.r. spectra of thallium-(I) formate and acetate were studied. Evidence was found for a number of phase changes not hitherto detected by thermal analysis measurements.³⁵⁹

Mass spectra were obtained for RCOOTl, where R = H or aliphatic radical. Tl^+ always had the greatest intensity, while the molecular ion was absent, or very weak. All of the compounds were monomeric in the gas-phase. For RCOOTl, where R = PhCH₂, Ph, substituted phenyl or PhCH=CH, the M^+ peak was observed (except for R = Ph). The strongest peak was still always Tl^+ . The thallium halogenobenzoates also gave $[TlX]^+$ rearrangement peaks. The intensities of these can be rationalised by using the HSAB principle. 361

Double molybdates and tungstates, ${\rm Tl}^{\rm I}{\rm Bi}\left({\rm EO}_4\right)_2$, where E = Mo or W, can be prepared by solid-phase reactions of the component oxides. Unit cell parameters and phase transformation temperatures were determined. 362

Crystals of ${\rm Tl}_2{\rm S}_7{\rm N}_8$ are orthorhombic (space group Pmnb), and consist of ${\rm Tl}^+$ cations, ${\rm S}_3{\rm N}_3^-$ and ${\rm S}_4{\rm N}_5^-$ anions. T1SbS $_2$ forms triclinic crystals, space group P $\bar{\rm I}$. SbS $_4$ units are linked by weak T1...S (3.50-3.68Å), T1...Sb (3.60-3.73Å) and T1...Tl (3.62Å) interactions. T1 $_2{\rm P}_2{\rm S}_6$ crystals are orthorhombic, space group Immm. T1 interacts with ten sulphur atoms, at distances of from 335.0 to 359.3 pm. 365

The Ge-S-Tl system has been studied by DTA and X-ray diffraction, together with e.m.f., microhardness and saturated vapour pressure measurements. Evidence was found for 5 ternary

compounds: ${\rm Tl_2Ge_2S_5}$, ${\rm Tl_2GeS_3}$, ${\rm TlGeS_2}$, ${\rm Tl_4GeS_5}$ and ${\rm Tl_4GeS_4}$. 366 Phase diagrams were established, and regions of glass formation observed for the system ${\rm TlSe-Tl_4GeS_4-GeSe_2}$. Phase diagrams were also constructed for ${\rm Tl_2S-SiS_2}$ and ${\rm Tl_2Se-SiSe_2}$ systems. 368

Equilibrium diagrams have been determined for the ternary reciprocal systems (13) 369 and (14). Other thallium(I)-

$$HgS + Tl2Se \rightleftharpoons HgSe + Tl2S \qquad ...(13)$$

$$HgS + Tl_2Te \rightleftharpoons HgTe + Tl_2S$$
 ...(14)

containing systems for which phase diagrams have been studied are: Ag-Se-Tl; 371 GeSe $_2$ -Tl $_2$ Se, GeSe-TlSe, GeSe $_2$ -TlSe; 372 Hg-Se-Tl; 373 Hg-Te-Tl; and Se-Tl (in the range 33-100% Se).

The solubilities of thallium(I) halides, and their crystallisation from aqueous solutions have been studied. It proved possible to grow large single crystals of high purity. 376

High-resolution photoelectron spectra were obtained for both valence bands and Tl 5d levels in thallium(I) halides, TlX, where X = Cl, Br or I, in the gas phase. A transition-state $X\alpha$ -SW calculation on TlCl gave agreement with previous valence band assignments. The ligand field splitting of the 5d Tl level was resolved in all 3 compounds. 377

TlCl-LnCl $_3$ (Ln = La, Gd or Yb) phase diagrams reveal the existence of Tl $_2$ Ln $_2$ Cl $_7$ (Ln = Gd, Yb); Tl $_2$ LnCl $_5$ (Ln = La, Gd) and Tl $_3$ LnCl $_6$ (Ln = Gd, Yb).

Phase equilibria were studied in the systems $PbBr_2$ -TlBr and GeI_2 -TlI. The following compounds were found: $TlPbBr_3$, Tl_3PbBr_5 , $TlGeI_3$ and Tl_3GeI_5 . Single crystals of Tl_3PbBr_5 , $TlPb_2Br_5$ and $TlGeI_3$, as well as Tl_3SnI_5 were all obtainable.

The thermodynamics of dissolving thallium(I) iodide in $\rm H_2O$, and in 0.5M to 4.0M aqueous solutions of $\rm KClO_4$ or KI at 278, 298 and 318K were determined. The observed increase in solubility with increasing temperature and ionic strength were ascribed to an entropy factor. 380

Solubility, and the composition of the solid phases were established for the system PbI_2 -TlI-H₂O at 25°C. ³⁸¹

The system ${\rm TlI-Tl}_2{\rm Se}$ was investigated by D.T.A., X-ray diffraction and metallography. Two new compounds, ${\rm Tl}_5{\rm ISe}_2$ and ${\rm Tl}_6{\rm I}_4{\rm Se}$, were formed. The crystal structure of ${\rm Tl}_6{\rm Cl}_4{\rm S}$, an

analogue of the latter, was found. It was based on the TlCl structure, in which $^1/5$ of the Tl or Cl atoms had been regularly replaced by ${\rm Tl}_2{\rm S}.^{382}$

3.5.2 Thallium(III) Compounds

The decomposition of MeTl(OAc) $_2$ in methanol, in the presence of amines, e.g. 2-, 3- or 4-picoline, dimethylaniline etc., gave mainly N-methylation. 383

A very long paper has appeared on the $^{13}\mathrm{C}$ and $^{1}\mathrm{H}$ n.m.r. parameters for a wide range of mono- and di-organothallium(III) derivatives. The major factor influencing J(T1-C) and J(T1-H) is the number of R groups attached to T1. 384

Crystal structures of complexes formed by dimethylthallium picrate and two isomers of dicyclohexano-18-crown-6 show that in both there are $\left[\text{Me}_2\text{Tl}(\text{crown})\right]^+$ cations and picrate anions. The complex cations consist of linear Me $_2$ Tl units normal to the plane through the six oxygen atoms of the ligand and the thallium atom. 385

TlR₃(diox), where R = 2,4,6-C₆F₃H₂ or C₆F₅; diox = 1,4-dioxan, are prepared by the reaction of TlCl₃ with LiR (for R = C₆F₃H₂) or of [NBu₄][TlR₄] with HBF₄ (for R = C₆F₅), with subsequent addition of dioxan. Dioxan can be replaced by neutral or anionic ligands or by metal carbonylates to give e.g. [TlR₃M], where M = CpMo(CO)₃, Co(CO)₄ or Mn(CO)₅.

The ternary carbonates $TlLnICO_3$, where Ln = La to Lu or Y, are synthesised at $350^{\circ}C$ by dehydration of the carbonates $TlLn(CO_3)_2.xH_2O$, or at $500^{\circ}C$ by the reaction of $Tl_2(CO_3)_2$ and $Ln_2(C_2O_4)_3.yH_2O$ under 3000 bar $CO_2.$

Pentachlorothallates (III) can be prepared by crystallisation from aqueous solutions of TlCl $_3$ and MCl i.e. $\rm K_2TlCl_5.2H_2O$, $\rm M_2TlCl_5.H_2O$ (M = Rb or NH $_4$). The potassium compound forms monoclinic crystals containing dimeric $\rm Tl_2Cl_{10}^{4-}$ anions, formed by edge-sharing octahedra. The monohydrates are orthorhombic. 388 The crystal structure of (pyH) $_2$ TlCl $_5$.Me $_2$ SO has been determined. There is basic octahedral geometry around the Tl in [TlCl $_5$ (Me $_2$ SO)] $^{2-}$, with Tl-O 2.42(2)A, and Tl-Cl within the range 2.506(6)A-2.636(6)A. The O-coordination of the DMSO confirms spectroscopic results. 389

 ${
m TlBr}_3({
m C}_4{
m H}_8{
m O}_2)$ forms monoclinic crystals, space group C2/c. Distorted planar TlBr $_3$ units are bridged by dioxan chairs forming

chains parallel to the c-axis. The overall coordination about the thallium is trigonal-pipyramidal. The Tl-O distance is 2.543(13) Å, with Tl-Br 2.498(3)-2.509(2) Å. 390

MTlBr₄ (where M = K, Rb, Cs or NH₄) are prepared by dehydration of the hydrates or by the reaction of TlBr, MBr and Br₂ in closed glass tubes at 400° C. The K⁺ and NH₄⁺ salts are both orthorhombic (with the Ga[GaCl₄] type of structure).

The previously-suggested space group of $[Bu_4^{\ n}N][TlI_4]$, P2₁, has been shown to be in fact P2₁/n, but this leads to only slight changes in the molecular parameters. 392

REFERENCES

- 1 L.Laaksonen, P.Pyykkö and D.Sundholm, Chem. Phys. Lett., 96(1983)1.
- 2 R.J.Harrison and N.C.Handy, Chem. Phys. Lett., 95(1983)386.
- 3 D.M.Hirst, Chem. Phys. Lett., 95 (1983) 591.
- W.C.Herndon and J.E.Leonard, Inorg. Chem., 22(1983)554.
- 5 J.B.Casey, W.J.Evans and W.H.Powell, Inorg. Chem., 22 (1983) 2228.
- 5 J.B.Casey, W.J.Evans and W.H.Powell, Inorg. Chem., 22 (1983) 2236.
- 7 T.Clark, D.Wilhelm, P.v.R.Schleyer, J. Chem. Soc., Chem. Commun., (1983)606.
- 8 O.D.Kuleshova and A.I.Gorbunov, Russ. J. Inorg. Chem., 28(1983)45.
- 9 P.C.Keller, R.L.Marks and J.V.Rund, Polyhedron, 2(1983)595.
- 10 T.Beringhelli, G.Filippini, A.Gavezzotti and M.Simonetta, J. Mol. Struct., 94(1983)51.
- 11 G.B.Jacobsen, J.H.Morris and D.Reed, J. Chem. Res. (S), (1983) 42.
- 12 R.L.De Kock and C.P.Jasperse, Inorg. Chem., 22(1983)3843.
- 13 T.Davan, E.W.Corcoran and L.G.Sneddon, Organometallics, 2 (1983) 1693.
- 14 J.A.Heppert and D.F.Gaines, Inorg. Chem., 22(1983)3155.
- 15 E.W.Corcoran and L.G.Sneddon, Inorg. Chem., 22(1983)182.
- 16 L.G.Hubert-Pfalzgraf and M.Tsunoda, Polyhedron, 2(1983)203.
- 17 T.P.Fehlner, C.E.Housecroft, W.R.Scheidt and K.S.Wong, Organometallics, 2(1983)825.
- 18 R.Shinomoto, E.Gamp, N.M.Edelstein, D.H.Templeton and A.Zankin, Inorg. Chem., 22 (1983) 2351.
- 19 W.Biffar, H.Nöth and D.Sedlak, Organometallics, 2(1983)579.
- 20 J.A.Baban, J.C.Brand and B.P.Roberts, J. Chem. Soc., Chem. Commun., (1983) 315.
- 21 L.Ya. Baranov and A.I.Boldyrev, Chem. Phys. Lett., 96(1983)218.
- 22 M.C.R.Symons, T.Chen and C.Glidewell, J. Chem. Soc., Chem. Commun., (1983) 326.
- 23 R.W.Broach, I.-S.Chang, T.J.Marks and J.M.Williams, Inorg. Chem., 22(1983)1081.
- D.G.Holah, A.N.Hughes, S.Maciaszek and V.R.Magnuson, J. Chem. Soc., Chem. Commun., (1983) 1308.
- 25 J.C.Bommer and K.W.Morse, Inorg. Chim. Acta, 74(1983)25.
- 26 C.Bianchini, C.A.Ghilardi, A.Meli, S.Midollini and A.Orlandini, J. Organomet. Chem., 255(1983)C27.
- 27 M.F.Lappert, A.Singh, J.L.Atwood and W.E. Hunter, J. Chem. Soc., Chem. Commun., (1983) 206.
- 28 U.Mirsaidov, A.Kurbonenkov and M.Khikmatov, Russ. J. Inorg. Chem., 27(1982)1376.
- V.D.Makhaev, A.P.Borison, B.P.Tarasov and K.N.Semenenko, Russ. J. Inorg. Chem., 28(1983)186.
- 30 K.Raghavachari, P.v.R.Schleyer and G.W.Spitznagel, J. Am. Chem. Soc., 105(1983)5917.
- 31 R.L.De Kock, P.Deshmukh, T.P.Fehlner, C.E.Housecroft, J.S.Plotkin and S.G.Shore, J. Am. Chem. Soc., 105 (1983) 815.
- 32 A.V.Agafonov, K.A.Solntsev, D.M.Vinitskii and N.T.Kuznetsov, Russ. J. Inorg. Chem., 27(1982)1697.
- 33 A.S.Rozenberg, G.N.Nechiporenko, L.V.Titov and M.D.Levicheva, Russ. J. Inorg. Chem., 27(1982)1527.
- 34 J.R.M.Giles, V.P.J.Marti and B.P.Roberts, J. Chem. Soc., Chem. Commun., (1983)696.
- J.Bould, N.N.Greenwood and J.D.Kennedy, J. Organomet. Chem., 249 (1983) 11.

- 36 J.Bould, J.E.Crook, N.N.Greenwood and J.D.Kennedy, J. Chem. Soc., Chem. Commun., (1983)951.
- 37 D.J.Fuller and D.L.Kepert, Polyhedron, 2(1983)749.
- P.Brint, J.P.Cronin, E.Seward and T.Whelan, J. Chem. Soc., Dalton Trans., (1983) 975.
- J.E.Crook, N.N.Greenwood, J.D.Kennedy and W.S.McDonald, J. Chem. Soc., Chem. Commun., (1983)83.
- 40 M.E.O'Neill and K.Wade, Polyhedron, 2(1983)963.
- 41 D.A.Saulys, N.A.Kutz and J.A.Morrison, Inorg. Chem., 22 (1983) 1821.
- 42 J.Bould, J.E.Crook, N.N.Greenwood, J.D.Kennedy and W.S. McDonald, J. Chem. Soc., Chem. Commun., (1983) 949.
- 43 E.H.Wong, L.Prasad, E.J.Gabe and M.G.Gatter, Inorg. Chem., 22(1983)1143.
- 44 M.A.Beckett, J.E.Crook, N.N.Greenwood and J.D.Kennedy, J. Chem. Soc., Chem. Commun., (1983)1228.
- 45 J.Bould, N.N. Greenwood and J.D.Kennedy, Polyhedron, 2 (1983) 1407.
- 46 W.Jarvis, Z.J.Abdou and T.Onak, Polyhedron, 2(1983)1067.
- 47 R.J.Asthiemer and L.G.Sneddon, Inorg. Chem., 22(1983)1928.
- 48 K.Fuller and T.Onak, J. Organomet. Chem., 249(1983)C6.
- 49 K.Baše, Coll. Czech. Chem. Commun., 48(1983)2593.
- N.Canter, C.G.Overberger and R.W.Rudolph, Organometallics, 2(1983)569.
- 51 A.Arafat, G.D.Friessen and L.J.Todd, Inorg. Chem., 22(1983)3721.
- 52 L.A.Leites, L.E.Vinogradova, J.Belloc and A.Novak, J. Mol. Struct., 100(1983)379.
- 53 F.Teixidor and R.W.Rudolph, J. Organomet. Chem., 241(1983)301.
- 54 G.Z.Suleimanov, V.I.Bregadze, N.A.Koval'chuk, Kh.S.Khalilov and I.P.Beletskaya, J. Organomet. Chem., 255(1983)C5.
- 55 Z.Janoušek, J.Plešek, B.Štibr and S.Heřmańek, Coll. Czech. Chem. Commun., 48(1983)228.
- 56 D.B.Palladino and T.P.Fehlner, Organometallics, 2(1983)1692.
- 57 R.G.Swisher, E.Sinn, G.A.Brewer and R.N.Grimes, J. Am. Chem. Soc., 105(1983)2079.
- 58 R.P.Micciche and L.G.Sneddon, Organometallics, 2(1983)674.
- 59 R.B.Maynard, R.G.Swisher and R.N.Grimes, Organometallics, 2(1983)500.
- 60 R.G.Swisher, E.Sinn and R.N.Grimes, Organometallics, 2(1983) 506.
- 61 G.J.Zimmerman and L.G.Sneddon, Acta Crystallogr., C39(1983)856.
- 62 R.P.Micciche, J.S.Plotkin and L.G.Sneddon, Inorg. Chem., 22(1982)1765.
- 63 N.W.Alcock, J.G.Taylor and M.G.H.Wallbridge, J. Chem. Soc., Chem. Commun., (1983)1168.
- 64 G.K.Barker, N.R.Godfrey, M. Green, H.E.Parge, F.G.A.Stone and A.J.Welch, J. Chem. Soc., Chem. Commun., (1983) 277.
- 65 G.K.Barker, M.Green, F.G.A.Stone, W.C.Wolsey and A.J.Welch, J. Chem. Soc., Dalton Trans., (1983) 2063.
- 66 R.B.Maynard, Z.-T.Wang, E.Sinn and R.N.Grimes, Inorg. Chem., 22(1983)873.
- 67 R.E.King, S.B.Miller, C.B.Knobler and M.F.Hawthorne, Inorg. Chem., 22(1983)3548.
- P.E.Behnken, C.B.Knobler and M.F.Hawthorne, Angew. Chem., Int. Ed. Engl., 22(1983)722.
- 69 L.Zheng, R.T.Baker, C.B.Knobler, J.A.Walker and M.F.Hawthorne, Inorg. Chem., 22(1983)3350.
- 70 J.A.Walker, C.A.O'Con, L.Zheng, C.B.Knobler and M.F.Hawthorne, J. Chem. Soc., Chem. Commun., (1983) 803.

- G.K.Barker, M.P.Garcia, M.Green, F.G.A.Stone and A.J.Welch, 71 J. Chem. Soc., Chem. Commun., (1983)137.
- V.N.Kalinin, A.V.Usatov, and L.I.Zakharkin, J. Organomet. 72 Chem., 254(1983)127.
- V.I.Bregadze, N.A.Koval'chuk, N.N.Godovikov, G.Z.Suleimanov 73 and I.P.Beletskaya, J. Organomet. Chem., 241(1983)Cl3.
- B.F.Spielvogel, A.T.McPhail, J.A.Knight, C.G.Moreland, C.L.Gatchell and K.W.Morse, Polyhedron, 2(1983)1345.
- S.G.Shore, D.-Y.Jan, L.-Y.Hsu and W.-L.Hsu, J. Am. Chem. Soc., 75 105(1983)5923.
- H.Klusik and A.Berndt, Angew. Chem., Int. Ed. Engl., 76 22(1983)877.
- P.Galow, A.Sebald and B.Wrackmeyer, J. Organomet. Chem., 77 259(1983)253.
- N.A.Bell, H.M.M.Shearer and C.B.Spencer, Acta Crystallogr., 78 C39(1983)694.
- C.Eaborn, M.N.El-Kheli, N.Retta and J.D.Smith, J. Organomet. 79 Chem., 249(1983)23.
- J.E.Frey and E.C.Kitchen, J. Am. Chem. Soc., 105(1983)2175. 80
- R.H.Cragg and T.J.Miller, J. Organomet. Chem., 241(1983)289.
- G.W.Kabalka, U.Sastry, K.A.R.Sastry, F.F.Knapp and 82 P.C.Srivastava, J. Organomet. Chem., 259(1983)269.
- B.Györi, J.Emri and I.Fehér, J. Organomet. Chem., 255(1983)17. R.D.Fischer and K.Yünlü, Z. Naturforsch., Teil B, 38(1983)1369. 83
- 84
- 85 J.Emri and B.Györi, Polyhedron, 2(1983)1273.
- G.Gundersen and S.Saebø, Acta Chem. Scand., Ser. A, 37(1983)277.
- 87 H.Nöth and S.Weber, Z. Naturforsch., Teil B, 38(1983)1460.
- A.Neckel, H.Polesak and P.G.Perkins, Inorg. Chem. Acta, 70(1983)255.
- P.Paetzold and R.Truppat, Chem. Ber., 116(1983)1531. 89
- V.Barone, F.Lelj, A.Pastore, P.L.Cristnziano and N.Russo, 90 J. Mol. Struct., 92(1983)103.
- 91 G.Klebe, K.Hensen and H.Fuess, Chem. Ber., 116(1983)3125.
- 92 R.Kohm, R.A.Geanangel and R.Liepins, Inorg. Chem., 22 (1983) 1684.
- 93 B.Wrackmeyer, J. Magn. Reson., 54(1983)174.
- 94 H.Nöth, Z. Naturforsch., Teil B, 38(1983)692.
- J.R. Jennings, R. Snaith, M.M. Mahmoud, S.C. Wallwork, S.J. Bryan, 95 J. Halfpenny, E.A. Petch and K. Wade, J. Organomet. Chem., 249(1983)Cl.
- 96 R.H.Cragg and T.J.Miller, J. Organomet. Chem., 255(1983)143.
- C.Brown, R.H.Cragg, T.J.Miller and D.O'N.Smith, 97 J. Organomet. Chem., 244(1983)209.
- 98 R.H.Cragg and T.J.Miller, J. Organomet. Chem., 243(1983)387.
- 99 J.A.Baban and B.P.Roberts, J. Chem. Soc., Chem. Commun., (1983)1224.
- 100 J.S.Binkley and L.R.Thorne, J. Chem. Phys., 79(1983)2932.
- 101 G.F.Musso, G.Figari and V.Magnasco, J. Chem. Soc., Faraday Trans.,2, 79(1983)931.
- 102 W.Linert, V.Gutmann and P.G.Perkins, Inorg. Chim. Acta, 69(1983)61.
- 103 W.Kaim and W.Lubitz, Angew. Chem., Int. Ed. Engl., 22(1983)892.
- 104 H.Binder and W.Diamantikos, Z. Naturforsch., Teil B, 38(1983)203.
- 105 J.M.Dupart, S.Page and J.G.Riess, J. Am. Chem. Soc., 105(1983)1051.
- 106 M.Shimoi and G.Kodama, Inorg. Chem., 22(1983)3300.
- 107 J.D.Odom, P.A.Brletic, S.A.Johnston and J.R.Durig, J. Mol. Struct., 96(1983)247.

- 108 M.Kameda and G.Kodama, Polyhedron, 2(1983)413.
- 109 M.Shimoi and G.Kodama, Inorg. Chem., 22(1983)1542.
- 110 R.Janta, R.Maisch, W.Malisch and E.Schmid, Chem. Ber., 116 (1983) 395.
- 111 S.Sakal and K.D.Jordan, J. Phys. Chem., 87(1983)2293.
- 112 V.Saraswathy, J.J.Diamond and G.A.Segal, J. Phys. Chem., 87 (1983) 718.
- 113 D.C.Frost, C.Kirby, W.M.Lau, C.A.McDowell and N.P.C.Westwood, J. Mol. Struct., 100(1983)87.
- 114 Yu.A. Ugai, N.E. Solov'ev and V.S. Makarov, Russ. J. Inorg. Chem., 28(1983) 753.
- 115 A.Kirfel, G.Will and R.F.Stewart, Acta Crystallogr.,
 B39(1983)175.
- 116 C.J.Adams and I.E.Clark, Polyhedron, 2(1983)673.
- 117 V.S.Sagulenko, E.M.Svarcs and V.G.Kalacheva, Russ. J. Inorg. Chem., 28(1983)958.
- 118 L.Babcock and R.Pizer, Inorg. Chem., 22(1983)174.
- 119 A.J.Baskar and C.M.Lukehart, J. Organomet. Chem., 254(1983)149.
- 120 M.T.Nguyen, P.Ruelle and T.-K.Ha, J. Mol. Struct., 104(1983)353.
- 121 G.E.Walrafen, M.S.Hokmabadi, P.N.Krishnan and S.Guha, J. Chem. Phys., 79(1983) 3609.
- 122 C.J.Cardin, H.E.Parge and J.W.Wilson, J. Chem. Res. (S), (1983)93.
- 123 Yu.N.Ill'in, V.V.Kravchenko and K.I.Petrov, Russ. J. Inorg. Chem., 28(1983)909.
- 124 V.J.Heintz, W.A.Freeman and T.A.Keiderling, Inorg. Chem., 22(1983)2319.
- 125 S.N.Kondrat'ev, S.I.Mel'nikova and A.M.Bondar, Russ. J. Inorg. Chem., 28(1983) 487.
- 126 A.M.Bondar', S.N.Kondrat'ev and S.I.Mel'nikova, Russ. J.
 Inorg. Chem., 28(1983)483.
- 127 V.G.Skvortsov, R.S. Tsekhanskii, A.K.Molodkin, V.M.Akimov, O.V.Petrova and V.P.Dolganev, Russ. J. Inorg. Chem., 28(1983)741.
- 128 H.Behm, Acta Crystallogr., C39(1983)1317.
- 129 I.G.Saiko, G.N.Kononova, K.I.Petrov and V.N.Agafonov, Russ. J. Inorg. Chem., 27(1983)1374.
- 130 M. Touboul, C.Bois, D. Mangin and D. Amoussou, Acta Crystallogr., C39(1983)685.
- 131 V.G.Skvortsov, R.S.Tsekhanskii, A.K.Molodkin, V.P.Dolganev and N.S.Rodionov, Russ. J. Inorg. Chem., 27(1983)1370.
- E.Uipe-Nava, A.S.Batsanov, Yu.T.Struchkov, V.M.Akimov, A.K.Molodkin, V.G.Skvortsov and N.S.Rodionov, Russ. J. Inorg. Chem., 28(1983)962.
- 133 J.Emsley and J.S.Lucas, J. Chem. Soc., Dalton Trans., (1983) 1811.
- 134 R.S.Tsekhanskii, V.G.Skvortsov and A.K.Molodkin, Russ. J. Inorg. Chem., 28(1983)486.
- 135 C.G.Salentine, Inorg. Chem., 22(1983)3920.
- 136 H.Behm, Acta Crystallogr., C39(1983)1156.
- 137 H.Behm, Acta Crystallogr., C39(1983)20.
- 138 R.S.Tsekhanskii, V.G.Skvortsov, A.K.Molodkin and Sh.V.Sadetdinov, Russ. J. Inorg. Chem., 28(1983)441.
- 139 B.Kh.Khazikhanova, B.A.Beremzhanov, R.F.Savich and V.G.Kalacheva, Russ. J. Inorg. Chem., 28(1983) 761.
- 140 B.Kh.Khazikhanova, B.A.Beremzhanov, R.F.Savich and V.G.Kalacheva, Russ. J. Inorg. Chem., 28(1983)729.
- 141 Z.L.Khakulov, G.K.Shurdumov and M.V.Mokhosoev, Russ. J. Inorg. Chem., 28(1983)1020.

- 142 G.K.Abdullaev, P.F.Rza-Zade and Kh.S.Mamedov, Russ. J. Inorg. Chem., 28(1983)428.
- 143 G.K.Abdullaev, P.F.Rza-Zade and Kh.S.Mamedov, Russ. J. Inorg. Chem., 28(1983)115.
- 144 G.K.Abdullaev, Kh.S.Mamedov and N.T.Buludov, Russ. J. Inorg. Chem., 27(1982)1671.
- 145 B.M.Gimarc and J.-K.Zhu, Inorg. Chem., 22(1983)479.
- 146 R.I.Baxter, R.J.M.Sands and J.W.Wilson, J. Chem. Res. (S), (1983) 94.
- 147 A.E.Shirk and J.S.Shirk, Inorg. Chem., 22(1983)72.
- 148 E.Haller, H.Köppel, L.S.Cederbaum, W. von Niessen and G.Bieri, J. Chem. Phys., 78 (1983) 1359.
- 149 M.A.Benzel, A.M.Maurice, R.L.Belford and C.E.Dykstra, J. Am. Chem. Soc., 105(1983)3802.
- 150 J.M.Miller, Inorg. Chem., 22(1983)2384.
- 151 D.R.Martin, J.U.Mondal, R.D.Williams, J.B.Iwamoto, N.C.Massey, D.M.Nuss and P.L.Scott, Inorg. Chim. Acta, 70(1983) 47.
- 152 S.Jurga and J.Depireux, J. Magn. Reson., 55(1983)12.
- 153 B.N.Chernyshov, G.P.Shchetinina and E.G.Ippolitov, Russ. J. Inorg. Chem., 27(1982)1526.
- 154 V.I.Saldin, O.V.Brovkina, E.G.Ippolitov and A.P.Popov, Russ. J. Inorg. Chem., 28(1983)273.
- 155 V.K.Volkova and G.A.Bukhalova, Russ. J. Inorg. Chem., 27(1982)1649.
- 156 W. Haubold and P. Jacob, Z. Anorg. Allg. Chem., 507(1983)231.
- 157 R.Bravo and J.-P.Laurent, J. Chem. Res. (S), (1983)6.
- 158 R.K.Harris, A.Root and K.B.Dillon, Spectrochim. Acta, Part A, 39(1983)309.
- 159 S.M. van der Kerk, P.H.M.Budzelaar, A. van der Kerk-van Hoof, G.J.M. van der Kerk and P. von R. Schleyer, Angew. Chem., Int. Ed. Engl., 22(1983)48.
- 160 G.E.Herberich, B.Hessner and D.Söhnen, J. Organomet. Chem., 256(1983)C23.
- 161 S.M. van der Kerk, J.C.Roos-Venekamp, A.J.M. van Beijnen and G.J.M. van der Kerk, Polyhedron, 2(1983)1337.
- 162 J.Edwin, M.Bochmann, M.C.Böhm, D.E.Brennan, W.E.Geiger, C.Krüger, J.Pebler, H.Pritzkow, W.Siebert, W.Swiridoff, H.Wadepohl, J.Weiss and U.Zenneck, J. Am. Chem. Soc., 105(1983) 2582.
- 163 G.E.Herberich, J.Hengesbach, G.Huttner, A.Frank and U.Schubert, J. Organomet. Chem., 246 (1983) 141.
- 164 G.E.Herberich and H.Ohst, Z. Naturforsch., Teil B, 38(1983)1388.
- 165 G.Schmid, U.Höhner, D.Kampmann, D.Zaika and R.Boese, J. Organomet. Chem., 256(1983)225.
- 166 G.E.Herberich, B.Hessner, W.Boveleth, H.Lüthe, R.Saive and L.Zelenka, Angew. Chem., Int. Ed. Engl., 22(1983)996.
- 167 H.C.Brown and G.G.Pai, J. Organomet. Chem., 250(1983)13.
- 168 H.-O.Berger and H.Nöth, J. Organomet. Chem., 250(1983)33.
- 169 N.M.Kostić and R.F.Fenske, Organometallics, 2(1983)1319.
- 170 G.E.Herberich, and D.Söhnen, J. Organomet. Chem., 254(1983)143.
- 171 G.E.Herberich and A.K.Naitham, J. Organomet. Chem., 241(1983)1.
- 172 G.Schmid, U.Höhner, D.Kampmann, D.Zaika and R.Boese, Chem. Ber., 116(1983)951.
- 173 G.Schmid and R.Boese, Z. Naturforsch., Teil B, 38(1983)485.
- 174 G.Schmid, U.Höhner and D.Kampmann, Z. Naturforsch., Teil B, 38(1983)1094.
- 175 W.Haubold, A.Gemmler and U.Kraatz, Z. Anorg. Allg. Chem., 507(1983)222.

- 176 S.Allaoud, H.Bitar, M.El Mouhtadi and B.Frange, J. Organomet. Chem., 248(1983)123.
- 177 M.Noltemeyer, G.M.Sheldrick, C.Habben and A.Meller, Z. Naturforsch., Teil B, 38(1983)1182.
- 178 K.Delpy, D.Schmitz and P.Paetzold, Chem. Ber., 116(1983)2994.
- 179 K.Niedenzu and H.Nöth, Chem. Ber., 116(1983)1132.
- 180 F.Alam and K.Niedenzu, J. Organomet. Chem., 243(1983)19.
- 181 G.Müller, D.Neugebauer, W.Geike, F.H.Köhler, J.Pebler and H.Schmidbaur, Organometallics, 2(1983)257.
- 182 S.J.Rettig and J.Trotter, Canad. J. Chem., 61(1983)2334.
- 183 R.Contreras, C.García, T.Mancilla and B.Wrackmeyer, J. Organomet. Chem., 246(1983)213.
- 184 R.Hohaus, Z. Anorg. Allg. Chem., 506(1983)185.
- 185 W.Kliegel, D.Nanninga, S.J.Rettig and J.Trotter, Canad. J. Chem., 61(1983)2329.
- 186 W.Kliegel, J. Organomet. Chem., 253(1983)9.
- 187 W.Kliegel, D.Nanninga, S.J.Rettig and J.Trotter, Canad. J. Chem., 61(1983)2493.
- 188 W.Kliegel and D.Nanninga, J. Organomet. Chem., 243(1983)373.
- 189 D.S.Matteson and D.Majumdar, Organometallics, 2(1983)230.
- 190 H.Binder, W.Matheis, H.-J.Deiseroth and H.Fu-Son, Z. Naturforsch., Teil B, 38(1983)554.
- 191 C.K.Narula and H.Nöth, Z. Naturforsch., Teil B, 38(1983)1161.
- 192 H.Nöth and D.Sedlak, Chem. Ber., 116(1983)1479.
- 193 D.R.Armstrong, J.Bolland, P.G.Perkins, G.Will and A.Kirfel, Acta Crystallogr., B39 (1983) 324.
- 194 Yu.B.Paderno and T.Lundström, Acta Chem. Scand., Ser. A, 37(1983)609.
- 195 T.Ito and I.Higashi, Acta Crystallogr., B39(1983)239.
- 196 D.L.Cooper, J.H.Black, M.A.L.Everard and W.G.Richards, J. Chem. Phys., 78 (1983)1371.
- 197 B.M.Bulychev, V.K.Bel'skii, A.V.Golubeva, P.A.Storozhenko and V.B.Polyakova, Russ. J. Inorg. Chem., 28(1983)639.
- 198 K.Ouzounis, H.Riffel, H.Hess, U.Kohler and J.Weidlein, Z. Anorg. Allg. Chem., 504 (1983) 67.
- 199 E.B.Lobkovsky, G.L.Soloveychik, B.M.Bulychev, A.B.Erofeev, A.I.Gusev and N.I.Kirillova, J. Organomet. Chem., 254 (1983) 167.
- 200 J.Villieras, M.Rambaud and B.Kirschleger, J. Organomet. Chem., 249 (1983) 315.
- 201 B.T.Thompson, T.N.Gallaher and T.C.DeVore, Polyhedron, 2(1983)619.
- 202 U.Mirsaidov and R.F.Gatina, Russ. J. Inorg. Chem., 28(1983) 301.
- 203 K.Mach and H.Antropiusova, J. Organomet. Chem., 248(1983)287.
- 204 R.Benn, A.Rufińska, H.Lehmkuhl, E.Janssen and C.Krüger, Angew. Chem., Int. Ed. Engl., 22(1983)779.
- 205 T.Weller, W.Meiler, H.-J.Köhler, H.Lischka and R.Höller, Chem. Phys. Lett., 98(1983)541.
- 206 D.J.Fox and H.F.Schaefer, J. Chem. Phys., 78 (1983) 328.
- 207 W. Ufnalski and A. Sporzyński, J. Organomet. Chem., 244 (1983) 1.
- 208 M.Boles Lawski and J. Serwatowski, J. Organomet. Chem., 255 (1983) 269.
- 209 A.V.de Miguel, M.Gómez, K.Isobe, B.F.Taylor, B.E.Mann and P.M.Maitlis, Organometallics, 2(1983)1724.
- 210 J.A.Labinger, J.N.Bonfiglio, D.L.Grimmett, S.T.Masuo, E.Shearin and J.S.Miller, Organometallics, 2(1983)733.
- 211 D.L.Grimmett, J.A.Labinger, J.N.Bonfiglio, S.T.Masuo, E.Shearin and J.S.Miller, Organometallics, 2 (1983)1325.

- 212 M.Boles Lawski and J. Serwatowski, J. Organomet. Chem., 254 (1983) 159.
- 213 J.L.Atwood and M.J.Zaworotko, J. Chem. Soc., Chem. Commun., (1983) 302.
- 214 J.L.Atwood, D.C.Hrncir, R.D.Priester and R.D.Rogers, Organometallics, 2 (1983) 985.
- 215 L.Rösch, G.Altnau, C.Krüger and Y.H.Tsay, Z. Naturforsch., Teil B, 38(1983)34.
- 216 W.E. Dorogy and E.P. Schram, Inorg. Chim. Acta, 73 (1983) 31.
- 217 H.F. Klein, K. Ellrich and K. Ackermann, J. Chem. Soc., Chem. Commun., (1983)888.
- 218 W.E. Dorogy and E.P. Schram, Inorg. Chim. Acta, 72 (1983) 187.
- 219 W.Clegg, M.Haase, U.Klingebiel, J.Neeman and G.M.Sheldrick, J. Organomet. Chem., 251 (1983) 281.
- 220 H.Schmidbaur, S.Lauteschläger and B.Milewski-Mahrla, Chem. Ber., 116(1983)1403.
- 221 T.Blumenthal, U.Wannagat, D.J.Brauer and A.Bürger, Monatsh. Chem., 114(1983)1271.
- 222 U.Wannagat, T.Blumenthal, D.J.Brauer and H.Bürger, J. Organomet. Chem., 249(1983)33.
- 223 T.Halder, W.Schwarz, J.Weidlein and P.Fischer, J. Organomet. Chem., 246 (1983) 29.
- 224 O.Kříž, J.Fusek and B.Čásenský, Coll. Czech. Chem. Commun., 48(1983)2728.
- 225 O.T.Beachley and O.Tessier-Youngs, Organometallics, 2 (1983) 796.
- 226 S.M.Sonchik, L.Andrews and K.D.Carlson, J. Phys. Chem., 87(1983) 2004.
- 227 S.F.Smith, J.Chandrasekhar and W.L.Jorgensen, J. Phys. Chem., 87(1983)1898.
- 228 M.R.Churchill and H.J.Wasserman, Inorg. Chem., 22(1983)41.
- 229 C.Tessier-Youngs, W.J.Youngs, O.T.Beachley and M.R.Churchill, Organometallics, 2(1983)1128.
- 230 Z.Florjańczyk and E.Szymańska-Zachara, J. Organomet. Chem., 259(1983)127.
- 231 K.Hermansson, Acta Crystallogr., C39(1983)925.
- 232 S.Singh and R.D.Verma, Polyhedron, 2(1983)1209.
- 233 L.I.Virin, V.N.Galyashin, N.M.Kuz min, V.G.Lambrev, I.Yu.Popova, I.Ya.Sabaev, A.I.Chernyak and A.V.Shaposhnikov, Russ. J. Inorg. Chem., 28(1983)782.
- 234 D.Jentsch, P.G.Jones, E.Schwarzmann and G.M.Sheldrick, Acta Crystallogr., C39 (1983) 1173.
- 235 S.Schönherr, H.Görz, R.Bertram, D.Müller and W.Gessner, Z. Anorg. Allg. Chem., 502 (1983) 113.
- 236 S.Schönherr, R.Bertram and A.Görz, Z. Anorg. Allg. Chem., 503(1983)193.
- 237 P.Brand and U.Seltmann, Z. Anorg. Allg. Chem., 502(1983)123.
- 238 P.Brand, U.Seltmann, D.Müller and U.Büchner, Z. Anorg. Allg. Chem., 502(1983)132.
- 239 A.S. Tracey and T.L. Boivin, J. Am. Chem. Soc., 105(1983)4901.
- 240 L.-O.Öhman, S.Sjöberg and N.Ingri, Acta Chem. Scand., Ser. A, 37(1983)561.
- 241 L.-O.Öhman and S.Sjöberg, Acta Chem. Scand., Ser. A, 37(1983)875.
- 242 L.-O.Öhman and S.Sjöberg, J.Chem. Soc., Dalton Trans., (1983) 2513.
- 243 S.J.Karlik, E.Tarien, G.A. Elgavish and G.L. Eichhorn, Inorg. Chem., 22(1983)525.

- 244 R.Caminiti, A.Lai, G.Saba and G.Crisponi, Chem. Phys. Lett., 97(1983)180.
- 245 N.F.Kosenko and I.A.Andriyuk, Russ. J. Inorg. Chem., 27 (1982) 1568.
- 246 N.F.Kosenko, Russ. J. Inorg. Chem., 28(1983)71.
- 247 V.R.Mirolyubov, Russ. J. Inorg. Chem., 28(1983)289.
- 248 G.A.Korablev, V.T.Ivashinnikov, A.A.Fotiev, V.E.Gladkov and A.S.Zubov, Russ. J. Inorg. Chem., 28(1983)881.
- 249 M. Villa and J.L.Bjorkstam, J. Magn. Reson., 51(1983)349.
- 250 J.M.Thomas, J.Klinowski, P.A.Wright and R.Roy, Angew. Chem., Int. Ed. Engl., 22(1983)614.
- 251 W.Gessner and D.Müller, Z. Anorg. Allg. Chem., 505(1983)195.
- 252 D.Müller, W.Gessner and G.Scheler, Polyhedron, 2(1983)1195.
- 253 E.T.Devyatkina, N.P.Kotsupalo, N.P.Tomilov and A.S.Berger, Russ. J. Inorg. Chem., 28(1983)801.
- 254 D.Müller, I.Grunze, E.Hallas and G.Ladwig, Z. Anorg. Allg. Chem., 800(1983)80.
- 255 V.A.Lyutsko, M.V.Nikanovich, K.N.Lapko and V.E.Tikavyi, Russ. J. Inorg. Chem., 28(1983)1105.
- 256 J.Klinowski, J.M.Thomas, C.A.Fyfe, G.C.Gobbi and J.S.Hartman, Inorg. Chem., 22(1983)63.
- 257 A.K.Cheetham, M.M.Eddy, J.Klinowski and J.M.Thomas, J. Chem. Soc., Chem. Commun., (1983)23.
- 258 G.Roult, R.Pastuszak, R.Marchand and Y.Laurent, Acta Crystallogr., C39(1983)673.
- 259 F.Griesfeller, J.Köhler and R.Hoppe, Z. Anorg. Allg. Chem., 507(1983)155.
- 260 I. Hassan and H.D. Grundy, Acta Crystallogr., C39(1983)3.
- 261 J.O.Thomas and G.C.Farrington, Acta Crystallogr., B39(1983)227.
- 262 A.Rettel, W.Gessner, G.Oliew and D.Müller, Z. Anorg. Allg. Chem., 500(1983)89.
- 263 S.Schönherr and H.Görz, Z. Anorg. Allg. Chem., 503(1983)37.
- 264 M.R.Petrov, O.N.Roslyakova and T.V.Blau, Russ. J. Inorg. Chem., 27(1982)1534.
- 265 A.S.Moshinskii, Russ. J. Inorg. Chem., 27(1982)1530.
- 266 G.Rigotti, A.E.Lavat, M.E.Escobar and E.J.Baran, Z. Anorg. Allg. Chem., 501(1983)184.
- 267 S.M.Cheshnitskii, A.A.Fotiev and L.L.Surat, Russ. J. Inorg. Chem., 28(1983)758.
- 268 A.A.Fotiev and L.L.Surat, Russ. J. Inorg. Chem., 27(1982)1800
- 269 A.A.Fotiev, L.L.Surat and I.P.Kolenko, Russ. J. Inorg. Chem., 28(1983)119.
- 270 A.A.Fotiev, B.V.Slobodin, L.L.Surat and T.P.Sirina, Russ. J. Inorg. Chem., 28(1983)588.
- 271 L.L.Surat and A.A.Fotiev, Russ. J. Inorg. Chem., 28(1983)1059
- 272 B.Jasper-Tönnies and Hk.Müller-Buschbaum, Z. Anorg. Allg. Chem., 504(1983)113.
- 273 V.V.Fomichev, V.A.Efremov, D.D.Baldanova, O.I.Kondratov and K.I.Petrov, Russ. J. Inorg. Chem., 28(1983)669.
- 274 E.I.Get'man and V.I.Marchenko, Russ. J. Inorg. Chem., 28(1983) 402.
- 275 H.J.Berthold, K.Köhler and R.Wartchow, Z. Anorg. Allg. Chem., 496(1983)7.
- 276 H.Nöth and P.Konrad, Chem. Ber., 116(1983)3552.
- 277 H. Haeuseler and A. Cansiz, Z. Naturforsch., Teil B, 38(1983)311.
- 278 O.V.Katorinia, V.M.Masalovich and A.S.Korobitsyn, Russ. J. Inorg. Chem., 27(1982)1566.
- 279 Z.Slanina and S.Beran, J. Mol. Struct., 92(1983)1.

- 280 B.S.Zakharova and L.P.Reshetnikova, Russ. J. Inorg. Chem., 28(1983)133.
- 281 V.N.Desyatnik, S.F.Katyshev, K.I.Trifonov and M.M.Nikulina, Russ. J. Inorg. Chem., 28(1983)125.
- 282 P.Bukoveć, Monatsh. Chem., 114(1983)277.
- 283 K.V.Gontar', V.N.Derkacheva and L.V.Zolotareva, Russ. J. Inorg. Chem., 27(1983)1358.
- 284 W.Clegg, U.Klingiebel, J.Neeman and G.M.Sheldrick, J. Organomet. Chem., 249 (1983) 47.
- 285 J.W.Akitt, R.H.Duncan and C.Setchell, J. Chem. Soc., Dalton Trans., (1983) 2639.
- 286 T.Tomita, C.E.Sjøgren, P.Klaeboe, G.N.Papatheodorou and E.Rytter, J. Raman Spectrosc., 14(1983)415.
- 287 J.S.Wilkes, J.S.Frye and G.F.Reynolds, Inorg. Chem., 22 (1983) 3870.
- 288 A.Boardman, R.W.H.Small and I.J.Worrall, Acta Crystallogr., C39(1983)433.
- 289 F. Taulelle and A.I. Popov, Polyhedron, 2(1983)889.
- 290 V.V.Safonov and V.A.Mireev, Russ. J. Inorg. Chem., 28(1983)460
- 291 G.Steidl, F.Dienstbach and K.Bächmann, Polyhedron, 2(1983)727.
- 292 V.P.Tarasov, V.I.Privalov, G.A.Kirakosyan and Yu.A.Busalev, Z. Naturforsch., Teil B, 38(1983)1173.
- 293 S.Pohl, Z. Anorg. Allg. Chem., 498(1983)15.
- 294 S.Pohl, Z. Anorg. Alig. Chem., 498(1983)20.
- 295 S.Pohl, Z. Naturforsch., Teil B, 38(1983)1530.
- 296 M.A.Douglas, R.H.Hauge and J.L.Margrave, J. Phys. Chem., 87(1983)2945.
- 297 S.Sridharan, H.Nowotny and S.F.Wayne, Monatsh. Chem., 114(1983)127.
- 298 K.N.Semenenko, L.A.Petrova and V.V.Burnasheva, Russ. J. Inorg. Chem., 28(1983)107.
- 299 H.M.Epstein, R.E.Schwerzel, P.J.Mallozzi and B.E.Campbell, J. Am. Chem. Soc., 105(1983)1466.
- 300 R.B.Hallock, O.T.Beachley, Y.-J.Li, W.M.Sanders, M.R.Churchill W.E.Hunter and J.L.Atwood, Inorg. Chem., 22(1983)3683.
- 301 A.Coutsolelos and R.Guilard, J. Organomet. Chem., 253(1983)273.
- 302 B.N.Helliwell and M.J.Taylor, Austral. J. Chem., 36(1983)385.
- 303 P.E.Riley, V.L.Pecoraro, C.J.Carrano and K.N.Raymond, Inorg. Chem., 22 (1983) 3096.
- 304 A.A.Zakharov and I.S.Shaplygin, Russ. J. Inorg. Chem., 28(1983)59.
- 305 J.Köhler and R.Hoppe, Z. Naturforsch., Teil B, 38(1983)130.
- 306 F.P.Alekseev, N.M.Kozhevnikova, M.V.Mokhosoev, E.N.N'maeva, and N.N.Smirnyagina, Russ. J. Inorg. Chem., 27(1982)1531.
- 307 I.N.Belyaev, L.N.Aver'yanova and S.S.Lopatin, Russ. J. Inorg. Chem., 28(1983)517.
- 308 M.V.Mokhosoev, L.G.Maksimova, L.V.Tumurova and N.A.Suranova, Russ. J. Inorg. Chem., 28(1983)818.
- 309 N.V.Porotnikov, V.G.Savenko and L.N.Margolin, Russ. J. Inorg. Chem., 28(1983)1098.
- 310 I.N.Belyaev, L.N.Aver'yanova and S.S.Lopatin, Russ. J. Inorg. Chem., 27(1982)1249.
- 311 J.Sásvári and P.-E.Werner, Acta Chem. Scand., Ser. A, 37(1983)203.
- 312 M.C.Cadée, G.C.Verschoor and D.J.W.Ijdo, Acta Crystallogr., C39(1983)921.
- 313 S.Jaulmes, A.Mazurier and M.Guittard, Acta Crystallogr., C39 (1983) 1594.
- 314 G.G.Hoffmann, Chem. Ber., 116(1983)3858.

- 315 Z.D.Melikova and P.G.Rustamov, Russ. J. Inorg. Chem., 28(1983)919.
- 316 T.M.Il'yasov and P.G.Rustamov, Russ. J. Inorg. Chem., 27(1982)1500.
- 317 A.Mazurier, F.Thevet and S.Jaulmes, Acta Crystallogr., C39(1983)814.
- 318 B.Eisenmann, M.Jakowski and H.Schäfer, Z. Naturforsch., Teil B, 38(1983)1581.
- 319 G.Ghémard, S.Jaulmes, J.Etienne and J.Flahaut, Acta Crystallogr., C39(1983)968.
- 320 A.Kraft, G.Kühn and W.Möller, Z. Anorg. Allg. Chem., 504(1983)155.
- 321 W.Klee and H.Schäfer, Z. Anorg. Allg. Chem., 499(1983)145.
- 322 H.-J.Deiseroth and H.Fu-son, Z. Naturforsch., Teil B, 38(1983)181.
- 323 D.Fenske and H.G. von Schnering, Angew. Chem., Int. Ed. Engl., 22(1983)407.
- 324 D.Babel and F.Binder, Z. Anorg. Allg. Chem., 505(1983)153.
- 325 V.A.Goliusov, V.A.Voronin and S.K.Churchmarev, Russ. J. Inorg. Chem., 27(1982)1799.
- 326 R.W.Berg and N.J.Bjerrum, Polyhedron, 2(1983)179.
- 327 H.Schmidbaur, U.Thewalt and T.Zafiropoulos, Organometallics, 2(1983)1550.
- 328 T.Foosnaes and H.A. Øye, Inorg. Chem., 22(1983)3873.
- 329 P.I.Fedorov, N.S.Malova and I.Yu.Rodimtseva, Russ. J. Inorg. Chem., 27(1982)1350.
- 330 F.W.Froben, W.Schulze and U.Kloss, Chem. Phys. Lett., 99(1983)500.
- 331 M.L. Fornasini, Acta Crystallogr., C39(1983)943.
- 332 M.A.Khan, C.Peppe and D.G.Tuck, Acta Crystallogr., C39(1983)1339.
- 333 J.M.Harrowfield, C.Pakawatchai and A.H.White, J. Chem. Soc., Dalton Trans., (1983)1109.
- 334 O.V.Sorokina, S.B.Evgen'ev and I.V.Mashchenko, Russ. J. Inorg. Chem., 28(1983)916.
- 335 N.V.Porotnikov, O.I.Kondratov and K.I.Petrov, Russ. J. Inorg. Chem., 28(1983)1051.
- 336 N.Bulc, L.Golič and J.Šiftar, Acta Crystallogr., C39(1983)176.
- 337 N.Bulc and L.Golič, Acta Crystallogr., C39(1983)174.
- 338 T.A.Kalinina, L.N.Lykova, L.W.Kovba, M.G.Mel'nikova and N.V.Porotnikov, Russ. J. Inorg. Chem., 28(1983)259.
- 339 N.N.Smirnyagina, N.M.Kozhevnikova, F.P.Alekseev and M.V.Mokhosoev, Russ. J. Inorg. Chem., 28(1983)892.
- 340 S.V.Malabenskii and L.P.Tsyganok, Russ. J. Inorg. Chem., 27(1982)1276.
- 341 H.Wiedemeier and R.Santandrea, Z. Anorg. Allg. Chem., 497(1983)105.
- 342 D.Carré and M.P.Pardo, Acta Crystallogr., C39(1983)822.
- 343 V.Krämer, Acta Crystallogr., C39(1983)1328.
- 344 G.G.Grushka, V.S.Gerasimenko and Z.M.Grushka, Russ. J. Inorg. Chem., 28(1983)1066.
- 345 A.N.Red'kin and V.A.Smirnov, Russ. J. Inorg. Chem., 28(1983)625.
- 346 V.A.Smirnov, Russ. J. Inorg. Chem., 28(1983)772.
- 347 K.-J.Range and H.-J.Hübner, Z. Naturforsch., Teil B, 38(1983)155.
- 348 G.Meyer and R.Blachnik, Z. Anorg. Allg. Chem., 503(1983)126.
- 349 K.Yamada, N.Weiden and A.Weiss, J. Mol. Struct., 111(1983)217.
- 350 Y.Nakamura, Y.Kitazawa, M.Shimoji and S.Shimokawa, J. Phys. Chem., 87(1983)5117.

- 351 M.D.Rausch, B.H.Edwards, R.D.Rogers and J.L.Atwood, J. Am. Chem. Soc., 105(1983) 3882.
- 352 Yu.B.Yakovlev and V.G.Ushakova, Russ. J. Inorg. Chem., 28(1983)1217.
- 353 S.E.Jeffs, R.W.H.Small and I.J.Worrall, Acta Crystallogr., C39(1983)1205.
- 354 G.L.Turner, J.F.Hinton and F.S.Millett, J. Magn. Reson., 51(1983)205.
- 355 I.N.Belyaev and V.B.Nalbandyan, Russ. J. Inorg. Chem., 28(1983)1224.
- 356 D.M.Adams, P.D.Hatton and I.D.Taylor, J. Raman Spectrosc., 14(1983)144.
- 357 T.V.Lysyak, S.L.Rusakov, I.S.Kolomnikov and Yu.Ya.Kharitonov, Russ. J. Inorg. Chem., 28(1983)756.
- 358 Yu.Ya.Kharitonov, I.I.Oleinik and N.A.Knyazeva, Russ. J. Inorg. Chem., 28(1983)477.
- 359 J.F.Hinton and K.R.Metz, J. Magn. Reson., 53(1983)117.
- 360 N.V.Gerbeleu, K.M.Indrichan and G.A.Popovich, Russ. J. Inorg. Chem., 27(1982)1570.
- 361 K.M.Indrichan, G.A.Popovich and N.V.Gerbeleu, Russ. J. Inorg. Chem., 28(1983)1115.
- 362 P.V.Klevstsov, A.P.Perepelitsa and R.F.Klevstova, Russ. J. Inorg. Chem., 28(1983)363.
- 363 H.Martan and J.Weiss, Acta Crystallogr., C39(1983)959,
- 364 N.Rey, J.C.Jumas, J.Olivier-Fourcade and E.Philippot, Acta Crystallogr., C39(1983)971.
- 365 C.Wibbelmann, W.Brockner, B.Eisenmann and H.Schäfer, Z. Naturforsch., Teil B, 38(1983)1575.
- 366 M.Babanly, N.A.Kulieva and I.S.Sattar-Zade, Russ. J. Inorg. Chem., 27(1982)1340.
- 367 E.Yu.Turkina and G.M.Orlova, Russ. J. Inorg. Chem., 28(1983)1180.
- 368 V.B.Lazarev, E.Yu.Peresh and V.I.Starosta, Russ. J. Inorg. Chem., 28(1983)1189.
- 369 M.M.Asadov, Russ. J. Inorg. Chem., 28(1983)1025.
- 370 M.M.Asadov, Russ. J. Inorg. Chem., 28(1983)1190.
- 371 M.B.Babanly and A.A.Kuliev, Russ. J. Inorg. Chem., 27(1982)1336.
- 372 M.B.Babanly and N.A.Kulieva, Russ. J. Inorg. Chem., 28(1983)877.
- 373 M.M.Asadov, M.B.Babanly and A.A.Kuliev, Russ. J. Inorg. Chem., 27(1982)1793.
- 374 M.M.Asadov, Russ. J. Inorg. Chem., 28(1983) 303.
- 375 E.Yu.Turkina and G.M.Orlova, Russ. J. Inorg. Chem., 28(1983)764.
- 376 F.N.Kozlov, G.A.Kitaev and L.V.Zhukova, Russ. J. Inorg. Chem., 28(1983)268.
- 377 G.M.Bancroft and D.J.Bristow, Canad. J. Chem., 61(1983)2669.
- 378 R.Blachnik and E.Enninga, Z. Anorg. Allg. Chem., 503(1983)133.
- 379 V.B.Lazarev, E.Yu.Peresh, V.V.Tsigika, V.M.Chereshnya, V.S.D'ordyai and N.P.Stasyuk, Russ. J. Inorg. Chem., 27(1982)1668.
- 380 I.D. Isaev, V.A. Fedorov, V.P. Antonova and V.E. Mironov, Russ. J. Inorg. Chem., 28(1983)751.
- 381 R.M.Shklovskaya, S.M.Arkhipov, V.A.Kuzina and T.E.Vdovkina, Russ. J. Inorg. Chem., 28(1983)1058.
- 382 R.Blachnik, H.A.Dreisbach and B.Engelen, Z. Naturforsch., Teil B, 38(1983)139.
- 383 U.Knips and F.Huber, Z. Naturforsch., Teil B, 38(1983)434.

- 384 F.Brady, R.W.Matthews, M.M.Thakur and D.G.Gillies, J. Organomet. Chem., 252(1983)1.
- 385 D.L. Hughes and M.R. Truter, Acta Crystallogr., B39(1983)329.
- 386 R.Usón, A.Laguna, J.A.Abad and E. de Jesús, J. Chem. Soc., Dalton Trans., (1983)1127.
- 387 H.Schweer and H.Seidel, Z. Anorg. Allg. Chem., 498(1983)205.
- 388 G. Thiele and B. Grunwald, Z. Anorg. Allg. Chem., 498(1983)105.
- 389 B.D.James, M.B.Millikan and M.F.Mackay, Inorg. Chim. Acta, 77(1983)L251.
- 390 S.E.Jeffs, R.W.H.Small and I.J.Worrall, Acta Crystallogr., C39(1983)1628.
- 391 H.W.Rotter and G.Thiele, Z. Anorg. Allg. Chem., 499(1983)175.
- 392 J.Glaser, P.L.Goggin, M.Sandström and V.Lutsko, Acta Chem. Scand., Ser. A, 37(1983)437.